A084916 Positive numbers of the form k = x^2 - 3*y^2.
1, 4, 6, 9, 13, 16, 22, 24, 25, 33, 36, 37, 46, 49, 52, 54, 61, 64, 69, 73, 78, 81, 88, 94, 96, 97, 100, 109, 117, 118, 121, 132, 141, 142, 144, 148, 150, 157, 166, 169, 177, 181, 184, 193, 196, 198, 208, 213, 214, 216, 222, 225, 229, 241, 244, 249, 253, 256
Offset: 1
Keywords
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..1000
- Will Jagy, C++ program Conway_Positive_All.cc to find all positive numbers represented by an indefinite binary quadratic form
- Will Jagy, Sample output from Conway_Positive_All.cc
- Will Jagy, C++ program Conway_Positive_Primitive.cc to find positive numbers primitively represented by an indefinite binary quadratic form
- Will Jagy, Sample output from Conway_Positive_Prim.cc
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
Reap[For[n = 1, n < 300, n++, If[Reduce[n == x^2 - 3*y^2, {x, y}, Integers] =!= False, Sow[n]]]][[2, 1]] (* Jean-François Alcover, Dec 03 2013 *)
Extensions
More terms from Reinhard Zumkeller, Jul 17 2003
Comments