cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085001 a(n) = (3*n+1)*(3*n+4).

Original entry on oeis.org

4, 28, 70, 130, 208, 304, 418, 550, 700, 868, 1054, 1258, 1480, 1720, 1978, 2254, 2548, 2860, 3190, 3538, 3904, 4288, 4690, 5110, 5548, 6004, 6478, 6970, 7480, 8008, 8554, 9118, 9700, 10300, 10918, 11554, 12208, 12880, 13570, 14278, 15004, 15748, 16510, 17290, 18088
Offset: 0

Views

Author

Gary W. Adamson, Jun 17 2003

Keywords

References

  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 38.

Crossrefs

Cf. A145910.

Programs

  • Magma
    [(3*n+1)*(3*n+4): n in [0..50]]; // Vincenzo Librandi, Jul 08 2012
    
  • Mathematica
    CoefficientList[Series[2*(2+8x-x^2)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 08 2012 *)
    Table[(3n+1)(3n+4),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{4,28,70},50] (* Harvey P. Dale, Apr 07 2019 *)
  • PARI
    a(n)=(3*n+1)*(3*n+4) \\ Charles R Greathouse IV, Jun 17 2017

Formula

Sum_{k=0..n} 3/a(k) = 3*(n+1)/(3*n+4). [Corrected by Gary Detlefs, Mar 14 2018]
Sum_{k>=0} 3/a(k) = 1.
From Gary W. Adamson, Jan 03 2007: (Start)
Sum_{k>=0} 1/a(k) = 1/3.
Sum_{k=0..n} 1/a(k) = (n+1)/(3*n+4) [Jolley]. (End) [Corrected by Gary Detlefs, Mar 14 2018]
G.f.: 2*(2+8*x-x^2)/(1-x)^3. - R. J. Mathar, Sep 17 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 08 2012
Sum_{n>=0} (-1)^n/a(n) = 2*Pi/(9*sqrt(3)) + 2*log(2)/9 - 1/3. - Amiram Eldar, Oct 08 2023
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: exp(x)*(4 + 24*x + 9*x^2).
a(n) = 2*A145910(n). (End)

Extensions

Edited by Don Reble, Nov 13 2005