A120223 a(n) is the minimal number k>1 such that n+k and n*k+1 are primes.
2, 3, 2, 3, 2, 5, 4, 5, 2, 3, 2, 5, 4, 3, 2, 7, 6, 11, 10, 3, 2, 9, 6, 13, 4, 3, 4, 15, 2, 7, 10, 11, 10, 3, 2, 5, 4, 5, 2, 7, 2, 5, 4, 9, 14, 13, 6, 5, 4, 3, 2, 21, 14, 5, 6, 5, 4, 9, 12, 7, 6, 5, 10, 3, 2, 5, 4, 15, 2, 3, 8, 25, 6, 27, 8, 3, 6, 11, 4, 3, 2, 15, 6, 5, 12, 11, 20, 15, 12, 7, 6, 5, 4, 3
Offset: 1
Keywords
Examples
a(3)=2 because 3+2=5 and 3*2+1=7 are prime; a(8)=5 because 8+5=13 and 8*5+1=41 are prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local k; for k from `if`( n::odd,2,3) do if isprime(n*k+1) and isprime(n+k) then return k fi od end proc: map(f, [$1..100]); # Robert Israel, Feb 03 2019
-
Mathematica
Reap[Do[Do[If[PrimeQ[{n+x, n*x+1}]=={True,True},Sow[x];Break[]],{x,2,100}],{n,120}]][[2,1]] mnk[n_]:=Module[{k=2},While[!AllTrue[{n+k,n*k+1},PrimeQ],k++];k]; Array[ mnk,100] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 15 2014 *)
-
PARI
for(n=1,100,k=2;while(!isprime(n+k),k++;while(!isprime(n*k+1),k++));print1(k,", ")) \\ Jinyuan Wang, Feb 04 2019
Comments