A085104 Primes of the form 1 + n + n^2 + n^3 + ... + n^k, n > 1, k > 1.
7, 13, 31, 43, 73, 127, 157, 211, 241, 307, 421, 463, 601, 757, 1093, 1123, 1483, 1723, 2551, 2801, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9901, 10303, 11131, 12211, 12433, 13807, 14281, 17293, 19183, 19531, 20023
Offset: 1
Examples
13 is a term since it is prime and 13 = 1 + 3 + 3^2 = 111_3. 31 is a term since it is prime and 31 = 1 + 2 + 2^2 + 2^3 + 2^4 = 11111_2. From _Hartmut F. W. Hoft_, May 08 2017: (Start) The sequence represented as a sparse matrix with the k-th column indexed by A006093(k+1), primes minus 1, and row n by A000027(n+1). Traversing the matrix by counterdiagonals produces a non-monotone ordering. 2 4 6 10 12 16 2 7 31 127 - 8191 131071 3 13 - 1093 - 797161 - 4 - - - - - - 5 31 - 19531 12207031 305175781 - 6 43 - 55987 - - - 7 - 2801 - - 16148168401 - 8 73 - - - - - 9 - - - - - - 10 - - - - - - 11 - - - - - 50544702849929377 12 157 22621 - - - - 13 - 30941 5229043 - - - 14 211 - 8108731 - - - 15 241 - - - - - 16 - - - - - - 17 307 88741 25646167 2141993519227 - - 18 - - - - - - 19 - - - - - - 20 421 - - 10778947368421 - 689852631578947368421 21 463 - - 17513875027111 - 1502097124754084594737 22 - 245411 - - - - 23 - 292561 - - - - 24 601 346201 - - - - Except for the initial values in the respective sequences the rows and columns as labeled in the matrix are: column 2: A002383 row 2: A000668 column 4: A088548 row 3: A076481 column 6: A088550 row 4: - column 10: A162861 row 5: A086122. (End)
References
- Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, page 174.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..10831 (terms up to 10^10; terms 1..3880 from T. D. Noe)
- Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38; included here with permission from the editors of Quadrature.
Crossrefs
Programs
-
Haskell
a085104 n = a085104_list !! (n-1) a085104_list = filter ((> 1) . a088323) a000040_list -- Reinhard Zumkeller, Jan 22 2014
-
Mathematica
max = 140; maxdata = (1 - max^3)/(1 - max); a = {}; Do[i = 1; While[i = i + 2; cc = (1 - m^i)/(1 - m); cc <= maxdata, If[PrimeQ[cc], a = Append[a, cc]]], {m, 2, max}]; Union[a] (* Lei Zhou, Feb 08 2012 *) f[n_] := Block[{i = 1, d, p = Prime@ n}, d = Rest@ Divisors[p - 1]; While[ id = IntegerDigits[p, d[[i]]]; id != Reverse@ id || Union@ id != {1}, i++]; d[[i]]]; Select[ Range[2, 60], 1 + f@# != Prime@# &] (* Robert G. Wilson v, Mar 31 2014 *)
-
PARI
list(lim)=my(v=List(),t,k);for(n=2,sqrt(lim), t=1+n;k=1; while((t+=n^k++)<=lim,if(isprime(t), listput(v,t))));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jan 08 2013
-
PARI
A085104_vec(N,L=List())=forprime(K=3,logint(N+1,2),for(n=2,sqrtnint(N-1,K-1),isprime((n^K-1)\(n-1))&&listput(L,(n^K-1)\(n-1))));Set(L) \\ M. F. Hasler, Jun 26 2018
Formula
Extensions
More terms from David Wasserman, Jan 26 2005
Comments