cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085121 Number of ways of writing n as the sum of three odd squares.

Original entry on oeis.org

0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 56, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 72
Offset: 0

Views

Author

N. J. A. Sloane, Apr 25 2004

Keywords

Comments

Number of ways of writing n as the sum of the squares of three odd numbers (see example). Equals 8*A008437 because each summand can be the square of either a positive or negative odd number, and there are three summands, thus 2^3 = 8. - Antti Karttunen & Michel Marcus, Jul 23 2018

Examples

			a(3) = 8 because 3 = (+1)^2 + (+1)^2 + (+1)^2 = (-1)^2 + (+1)^2 + (+1)^2 = (+1)^2 + (-1)^2 + (+1)^2 = (+1)^2 + (+1)^2 + (-1)^2 = (-1)^2 + (-1)^2 + (+1)^2 = (-1)^2 + (+1)^2 + (-1)^2 = (+1)^2 + (-1)^2 + (-1)^2 = (-1)^2 + (-1)^2 + (-1)^2. - _Antti Karttunen_, Jul 23 2018
		

Crossrefs

Cf. A005875, A008437. The nonzero coefficients give A005878.

Programs

Formula

G.f.: (Sum_{n=-oo..oo} q^((2n+1)^2))^3.