A085121 Number of ways of writing n as the sum of three odd squares.
0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 56, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 72
Offset: 0
Keywords
Examples
a(3) = 8 because 3 = (+1)^2 + (+1)^2 + (+1)^2 = (-1)^2 + (+1)^2 + (+1)^2 = (+1)^2 + (-1)^2 + (+1)^2 = (+1)^2 + (+1)^2 + (-1)^2 = (-1)^2 + (-1)^2 + (+1)^2 = (-1)^2 + (+1)^2 + (-1)^2 = (+1)^2 + (-1)^2 + (-1)^2 = (-1)^2 + (-1)^2 + (-1)^2. - _Antti Karttunen_, Jul 23 2018
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
- J. E. Jones [Lennard-Jones] and A. E. Ingham, On the calculation of certain crystal potential constants and on the cubic crystal of least energy, Proc. Royal Soc., A 107 (1925), 636-653 (see p. 650).
Programs
-
PARI
A008442(n) = if( n<1 || n%4!=1, 0, sumdiv(n, d, (d%4==1) - (d%4==3))); \\ From A008442. A290081(n) = if(n%2,0,A008442(n/2)); A008437(n) = if((n<3)||!(n%2),0,my(s=0, k = sqrtint(n)); k -= ((1+k)%2); while(k>=1, s += A290081(n-(k*k)); k -= 2); (s)); A085121(n) = 8*A008437(n); \\ Antti Karttunen, Jul 22 2018
Formula
G.f.: (Sum_{n=-oo..oo} q^((2n+1)^2))^3.
Comments