cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A005878 Theta series of cubic lattice with respect to deep hole.

Original entry on oeis.org

8, 24, 24, 32, 48, 24, 48, 72, 24, 56, 72, 48, 72, 72, 48, 48, 120, 72, 56, 96, 24, 120, 120, 48, 96, 96, 72, 96, 120, 48, 104, 168, 96, 48, 120, 72, 96, 192, 72, 144, 96, 72, 144, 120, 96, 104, 192, 72, 120, 192, 48, 144, 216, 48, 96, 120, 144, 192, 168, 120, 96, 216, 72
Offset: 0

Views

Author

Keywords

Comments

Number of ways of writing 8*n+3 as the sum of three odd squares. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008
Expansion of Jacobi theta constant theta_2^3. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 107.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals 8 times A008443. Cf. A085121.

Programs

  • Mathematica
    QP = QPochhammer; CoefficientList[(2 QP[q^2]^2/QP[q])^3 + O[q]^63, q] (* Jean-François Alcover, Jul 04 2017 *)
  • PARI
    {a(n)=if(n<0, 0, 8*polcoeff( sum(k=0, (sqrtint(8*n+1)-1)\2, x^((k^2+k)/2), x*O(x^n))^3, n))} {a(n)=local(A); if(n<0, 0, A=x*O(x^n); 8*polcoeff( (eta(x^2+A)^2/eta(x+A))^3, n))} \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008

Formula

G.f.: Form (Sum_{n=-inf..inf} q^((2n+1)^2))^3, then divide by q^3 and set q = x^(1/8).
a(n) = 8 * A008443(n).

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008

A008437 Expansion of Jacobi theta constant theta_2^3 /8.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Number of ways of writing n as the sum of three odd positive squares.

Examples

			From _Antti Karttunen_, Jul 24 2017: (Start)
a(19) = 3 as 19 = 1+9+9 = 9+1+9 = 9+9+1.
a(27) = 4 as 27 = 1+1+25 = 1+25+1 = 25+1+1 = 9+9+9.
(End)
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.

Crossrefs

Equals A085121/8.
Cf. A000004 (the even bisection), A000196, A290081.

Programs

  • Scheme
    (define (A008437 n) (cond ((< n 3) 0) ((even? n) 0) (else (let loop ((k (- (A000196 n) (modulo (+ 1 (A000196 n)) 2))) (s 0)) (if (< k 1) s (loop (- k 2) (+ s (A290081 (- n (* k k)))))))))) ;; Antti Karttunen, Jul 24 2017

A349610 Number of solutions to x^2 + y^2 + z^2 <= n^2, where x, y, z are positive odd integers.

Original entry on oeis.org

0, 0, 1, 1, 4, 7, 17, 20, 35, 45, 69, 84, 114, 136, 184, 217, 272, 314, 389, 443, 528, 597, 702, 784, 901, 1018, 1166, 1268, 1442, 1589, 1791, 1926, 2157, 2332, 2584, 2800, 3058, 3293, 3596, 3872, 4194, 4485, 4878, 5184, 5590, 5950, 6388, 6761, 7232
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 23 2021

Keywords

Examples

			a(4) = 4 since there are solutions (1,1,1), (3,1,1), (1,3,1), (1,1,3).
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[EllipticTheta[2, 0, x^4]^3/(8 (1 - x)), {x, 0, n^2}], {n, 0, 48}]

Formula

a(n) = [x^(n^2)] theta_2(x^4)^3 / (8 * (1 - x)).
a(n) = Sum_{k=0..n^2} A008437(k).
a(n) = A053596(n) / 8.

A372512 Number of solutions to x^2 + y^2 + z^2 <= n, where x, y, z are positive odd integers.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 7, 7, 7, 7, 7, 7, 7, 7, 11, 11, 11, 11, 11, 11, 11, 11, 17, 17, 17, 17, 17, 17, 17, 17, 20, 20, 20, 20, 20, 20, 20, 20, 26, 26, 26, 26, 26, 26, 26, 26, 35, 35, 35, 35, 35, 35, 35, 35, 38, 38, 38, 38, 38, 38, 38, 38, 45, 45, 45, 45, 45, 45
Offset: 0

Views

Author

Ilya Gutkovskiy, May 04 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[EllipticTheta[2, 0, x^4]^3/(8 (1 - x)), {x, 0, nmax}], x]
Showing 1-4 of 4 results.