cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A085145 Positions of 0 in A085144.

Original entry on oeis.org

0, 1, 3, 7, 10, 15, 21, 26, 31, 36, 43, 46, 53, 58, 63, 73, 82, 87, 93, 100, 107, 110, 117, 122, 127, 136, 147, 150, 156, 165, 170, 175, 180, 187, 190, 201, 210, 215, 221, 228, 235, 238, 245, 250, 255, 273, 290, 295, 301, 313, 324, 331, 334, 341
Offset: 1

Views

Author

Ralf Stephan, Jun 20 2003

Keywords

Comments

If n is odd then (n-1)/2 is also in sequence, with the even subsequence starting 0,10,26,36,46,58...
Records for first differences are 2,3,...,2^k+2,2^k+3...

A255723 Another variant of Per Nørgård's "infinity sequence", cf. A004718: t(0) = 0; t(4*n) = t(n); t(4*n+1) = t(n) - 2; t(4*n+2) = -t(n) - 1; t(4*n+3) = t(n) + 2.

Original entry on oeis.org

0, -2, -1, 2, -2, -4, 1, 0, -1, -3, 0, 1, 2, 0, -3, 4, -2, -4, 1, 0, -4, -6, 3, -2, 1, -1, -2, 3, 0, -2, -1, 2, -1, -3, 0, 1, -3, -5, 2, -1, 0, -2, -1, 2, 1, -1, -2, 3, 2, 0, -3, 4, 0, -2, -1, 2, -3, -5, 2, -1, 4, 2, -5, 6, -2, -4, 1, 0, -4, -6, 3, -2, 1, -1
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 19 2015

Keywords

Comments

Per Nørgård's surname is also written as Noergaard;
example of a sequence sharing with A004718 some main characterizing properties, see link (chapter 7).

References

  • Yu Hin (Gary) Au, Christopher Drexler-Lemire, and Jeffrey Shallit, "Notes and note pairs in Norgard's infinity series", J. of Mathematics and Music (2017). DOI: http://dx.doi.org/10.1080/17459737.2017.1299807

Crossrefs

Programs

  • Haskell
    a255723 n = a255723_list !! n
    a255723_list = 0 : concat (transpose [map (subtract 2) a255723_list,
                                          map (-1 -) a255723_list,
                                          map (+ 2) a255723_list,
                                          tail a255723_list])

A256184 First of two variations by Per Nørgård of his "infinity sequence", cf. A004718: u(0) = 0; u(3*n) = -u(n); u(3*n+1) = u(n) - 2; u(3*n+2) = u(n) - 1.

Original entry on oeis.org

0, -2, -1, 2, -4, -3, 1, -3, -2, -2, 0, 1, 4, -6, -5, 3, -5, -4, -1, -1, 0, 3, -5, -4, 2, -4, -3, 2, -4, -3, 0, -2, -1, -1, -1, 0, -4, 2, 3, 6, -8, -7, 5, -7, -6, -3, 1, 2, 5, -7, -6, 4, -6, -5, 1, -3, -2, 1, -3, -2, 0, -2, -1, -3, 1, 2, 5, -7, -6, 4, -6, -5
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 19 2015

Keywords

Comments

Per Nørgård's surname is also written as Noergaard.
Not squarefree in contrast to A004718, first repetition of order 3: a(32) = a(33) = a(34) = -1, see link.

Crossrefs

Programs

  • Haskell
    a256184 n = a256184_list !! n
    a256184_list = 0 : concat (transpose [map (subtract 2) a256184_list,
                                          map (subtract 1) a256184_list,
                                          map negate $ tail a256184_list])
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def a(n): return 0 if n == 0 else (a(n//3) - (3-n%3)) if n%3 else -a(n//3)
    print([a(n) for n in range(72)]) # Michael S. Branicky, Sep 02 2021

A256185 Second of two variations by Per Nørgård of his "infinity sequence", cf. A004718: v(0) = 0; v(3*n) = -v(n); v(3*n+1) = v(n) - 3; v(3*n+2) = -2 - v(n).

Original entry on oeis.org

0, -3, -2, 3, -6, 1, 2, -5, 0, -3, 0, -5, 6, -9, 4, -1, -2, -3, -2, -1, -4, 5, -8, 3, 0, -3, -2, 3, -6, 1, 0, -3, -2, 5, -8, 3, -6, 3, -8, 9, -12, 7, -4, 1, -6, 1, -4, -1, 2, -5, 0, 3, -6, 1, 2, -5, 0, 1, -4, -1, 4, -7, 2, -5, 2, -7, 8, -11, 6, -3, 0, -5, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 19 2015

Keywords

Comments

Per Nørgård's surname is also written as Noergaard;
for all odd j exists k such that abs(a(k+1)-a(k)) = j, in contrast to A004718, where this holds also for even j > 0, see link.

References

  • Yu Hin (Gary) Au, Christopher Drexler-Lemire, and Jeffrey Shallit, "Notes and note pairs in Norgard's infinity series", J. of Mathematics and Music (2017). DOI: http://dx.doi.org/10.1080/17459737.2017.1299807

Crossrefs

Programs

  • Haskell
    a256185 n = a256185_list !! n
    a256185_list = 0 : concat (transpose [map (subtract 3) a256185_list,
                                          map (-2 -) a256185_list,
                                          map negate $ tail a256185_list])
Showing 1-4 of 4 results.