A085232 In canonical prime factorization: power of smallest prime factor is less than power of greatest prime factor.
6, 10, 14, 15, 18, 20, 21, 22, 26, 28, 30, 33, 34, 35, 36, 38, 39, 42, 44, 46, 50, 51, 52, 54, 55, 57, 58, 60, 62, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 114, 115
Offset: 1
Keywords
Examples
60 = 2^2 * 3 * 5 with 2^2=4 < 5, therefore 60 is a term.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..2500
Crossrefs
Cf. A085231.
Programs
-
Mathematica
spfQ[n_]:=Module[{fi=FactorInteger[n]},Length[fi]>1&&fi[[1,1]]^fi[[1,2]] < fi[[-1,1]]^fi[[-1,2]]]; Select[Range[120],spfQ] (* Harvey P. Dale, Jul 30 2018 *)
Comments
A006530(a(n));