cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A085231 Numbers k in whose canonical factorization the power of the smallest prime factor is greater than the power of the greatest prime factor.

Original entry on oeis.org

12, 24, 40, 45, 48, 56, 63, 80, 96, 112, 120, 135, 144, 160, 168, 175, 176, 189, 192, 208, 224, 240, 275, 280, 288, 297, 315, 320, 325, 336, 351, 352, 360, 384, 405, 416, 425, 448, 459, 475, 480, 504, 513, 528, 539, 544, 560, 567, 575, 576, 608, 621, 624
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 22 2003

Keywords

Comments

p*a(n) is a term for all primes p with A020639(a(n)) < p < A006530(a(n)).

Examples

			The canonical factorization of 240 is 2^4 * 3 * 5. 2^4 = 16 > 5, therefore 240 is a term.
		

Crossrefs

A085233 is a subsequence.
Subsequence of A102749.

Programs

  • Mathematica
    pfgQ[n_]:=Module[{fe=#[[1]]^#[[2]]&/@FactorInteger[n]},fe[[1]]>fe[[-1]]]; Select[Range[700],pfgQ] (* Harvey P. Dale, Dec 11 2017 *)

Formula

A028233(a(n)) > A053585(a(n)).

Extensions

Edited by Peter Munn, Jun 01 2025

A379094 Numbers whose factors in the canonical prime factorization neither increase weakly nor decrease weakly.

Original entry on oeis.org

60, 84, 90, 120, 126, 132, 156, 168, 180, 204, 228, 240, 252, 264, 270, 276, 280, 300, 312, 315, 336, 348, 350, 360, 372, 378, 408, 420, 440, 444, 456, 480, 492, 495, 504, 516, 520, 525, 528, 540, 550, 552, 560, 564, 585, 588, 594, 600, 616, 624, 630, 636, 650
Offset: 1

Views

Author

Peter Luschny, Dec 17 2024

Keywords

Comments

A379097 is a subsequence.
From Michael De Vlieger, Dec 18 2024: (Start)
Proper subset of A126706.
Smallest powerful number is a(314) = 2700. (End)

Examples

			60 is a term because the factors in the canonical prime factorization are [4, 3, 5], a list that is neither increasing nor decreasing.
Primorials (A002110) are not terms of this sequence.
		

Crossrefs

Programs

  • Maple
    with(ArrayTools):
    fact := n -> local p; [seq(p[1]^p[2], p in ifactors(n)[2])]:
    isA379094 := proc(n) local f; f := fact(n);
    is(not IsMonotonic(f, direction=decreasing, strict=false) and not IsMonotonic(f, direction=increasing, strict=false)) end:
    select(isA379094, [seq(1..650)]);
  • Mathematica
    Select[Range[650], Function[f, NoneTrue[{Sort[f], ReverseSort[f]}, # == f &]][Power @@@ FactorInteger[#]] &] (* Michael De Vlieger, Dec 18 2024 *)
  • PARI
    is_a379094(n) = my(C=apply(x->x[1]^x[2], Vec(factor(n)~))); vecsort(C)!=C && vecsort(C,,4)!=C \\ Hugo Pfoertner, Dec 18 2024

A085234 (Greatest power of smallest prime factor of n) < square root(n).

Original entry on oeis.org

6, 10, 14, 15, 18, 20, 21, 22, 26, 28, 30, 33, 34, 35, 36, 38, 39, 42, 44, 46, 50, 51, 52, 54, 55, 57, 58, 60, 62, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 114, 115
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 22 2003

Keywords

Comments

A028233(a(n))^2 < a(n);
a(n)=A085232(n) for n<69: a(69)=120, A085232(69)=122=a(70).

Programs

  • Maple
    isA085234 := proc(n)
        if A028233(n)^2 < n then
            true;
        else
            false;
        end if;
    end proc:
    for n from 1 to 115 do
        if isA085234(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Jul 09 2016
  • Mathematica
    okQ[n_] := Power @@ FactorInteger[n][[1]] < Sqrt[n]; Select[Range[120], okQ] (* Jean-François Alcover, Feb 13 2018 *)
Showing 1-3 of 3 results.