cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A097566 Number of partitions p of n for which Odd(p) = Odd(p') (mod 4), where p' is the conjugate of p.

Original entry on oeis.org

1, 1, 0, 1, 5, 5, 1, 5, 20, 20, 6, 20, 65, 65, 25, 66, 185, 185, 85, 190, 481, 482, 250, 501, 1165, 1170, 666, 1230, 2666, 2685, 1646, 2850, 5827, 5887, 3830, 6303, 12251, 12415, 8487, 13395, 24912, 25323, 18052, 27507, 49215, 50176, 37072, 54832, 94781, 96905
Offset: 0

Views

Author

Wouter Meeussen, Aug 28 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Odd(p) is the number of odd parts of a partition p. a(n) is denoted t(n) in Problem 10969.

Examples

			G.f. = 1 + x + x^3 + 5*x^4 + 5*x^5 + x^6 + 5*x^7 + 20*x^8 + 20*x^9 + 6*x^10 + ...
G.f. = 1/q + q^23 + q^71 + 5*q^95 + 5*q^119 + q^143 + 5*q^167 + 20*q^191 + 20*q^215 + ...
a(5) = 5 because only the partitions {5}, {3,2}, {3,1,1}, {2,2,1}, {1,1,1,1,1} have conjugates resp. {1,1,1,1,1}, {2,2,1}, {3,1,1}, {3,2}, {5} with matching counts of odd elements (resp. (1,5), (1,1), (3,3), (1,1), (5,1) being congruent modulo 4 ).
		

Crossrefs

Programs

  • Maple
    with(combinat); t1:=mul( (1+q^(2*n-1))/((1-q^(4*n))*(1+q^(4*n-2))^2), n=1..100): t2:=series(t1,q,100): f:=n->coeff(t2,q,n); p:=numbpart; t:=n->(p(n)+f(n))/2; # N. J. A. Sloane, Jan 25 2009
  • Mathematica
    fStanley[n_Integer]:=Product[(1+q^(2i-1))/(1-q^(4i))/(1+q^(4i-2))^2, {i, n}]; Table[PartitionsP[n]/2+1/2*Coefficient[Series[fStanley[n], {q, 0, n+1}], q^n], {n, 64}] or Table[Count[Partitions[n], q_/;Mod[Count[q, w_/;OddQ[w]]- Count[TransposePartition[q], w_/;OddQ[w]], 4]===0], {n, 24}]
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^8] / (EllipticTheta[ 3, 0, x^2] QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, Jun 01 2014 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^16 + A)^5 / (eta(x + A) * eta(x^4 + A)^5 * eta(x^32 + A)^2), n))}; /* Michael Somos, May 04 2011 */

Formula

From Michael Somos, May 04 2011: (Start)
Expansion of q^(1/24) * eta(q^2)^2 * eta(q^16)^5 / (eta(q) * eta(q^4)^5 * eta(q^32)^2) in powers of q.
Expansion of phi(x^8) / (phi(x^2) * f(-x)) in powers of x where phi(), f() are Ramanujan theta functions.
Euler transform of period 32 sequence [ 1, -1, 1, 4, 1, -1, 1, 4, 1, -1, 1, 4, 1, -1, 1, -1, 1, -1, 1, 4, 1, -1, 1, 4, 1, -1, 1, 4, 1, -1, 1, 1, ...].
G.f.: theta_3(x^8) / (theta_3(x^2) * Product_{k>0} (1 - x^k)) = A000041(x) * A112128(x^2).
a(n) = (A000041(n) + A085261(n)) / 2.
(End)

A144558 Expansion of Product_{n >= 1} (1+q^(2*n-1))/((1-q^(4*n))*(1+q^(4*n-2))).

Original entry on oeis.org

1, 1, -1, 0, 3, 2, -3, -1, 8, 5, -8, -3, 18, 11, -19, -7, 38, 22, -41, -16, 75, 42, -82, -33, 142, 78, -157, -64, 258, 138, -288, -120, 455, 239, -511, -215, 781, 404, -882, -374, 1310, 668, -1486, -635, 2153, 1084, -2450, -1053, 3477, 1733, -3967, -1712, 5524, 2726, -6316, -2737, 8652, 4233, -9907
Offset: 0

Views

Author

N. J. A. Sloane, Jan 02 2009

Keywords

Comments

The authors of the article have informed me that there is a typo in the published g.f. - the factor (1+q^(4*n-2)) should be squared. When this is done, we get the sequence A085261. In short, this is an erroneous version of A085261.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x - x^2 + 3*x^4 + 2*x^5 - 3*x^6 - x^7 + 8*x^8 + 5*x^9 - 8*x^10 + ...
G.f. = 1/q + q^7 - q^15 + 3*q^31 + 2*q^39 - 3*q^47 - q^55 + 8*q^63 + 5*q^71 + ...
		

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q^2]^3*(QP[q^8]/(QP[q]*QP[q^4]^4)) + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^8 + A) / (eta(x + A) * eta(x^4 + A)^4), n))}; /* Michael Somos, Jun 04 2012 */

Formula

From Michael Somos, Jun 04 2012: (Start)
Expansion of chi(x) / f(x^2) in powers of x where chi(), f() are Ramanujan theta functions.
Expansion of q^(1/8) * eta(q^2)^3 * eta(q^8) / (eta(q) * eta(q^4)^4) in powers of q.
Euler transform of period 8 sequence [ 1, -2, 1, 2, 1, -2, 1, 1, ...]. (End)

A190101 Number of transpose partition pairs of order n whose number of odd parts differ by numbers of the form 4*k + 2.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 5, 5, 1, 5, 18, 18, 6, 18, 55, 55, 23, 56, 150, 150, 73, 155, 376, 377, 205, 394, 885, 890, 526, 940, 1979, 1996, 1261, 2128, 4240, 4290, 2863, 4611, 8764, 8895, 6213, 9630, 17561, 17877, 12980, 19479, 34243, 34961, 26246, 38310, 65187
Offset: 0

Views

Author

Michael Somos, May 04 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Denoted u(n)/2 by Lossers. t(n) is A097566(n). Stanley's f(n) is A085261(n). Partitions p(n) is A000041(n).
As noted in the solution the number of odd parts of a partition and its conjugate are of the same parity as n. Hence the difference in the number of odd parts must be even and if it is not divisible by 4 then it is of the form 4*k + 2 and the partition is not self conjugate.

Examples

			G.f. = x^2 + x^3 + x^5 + 5*x^6 + 5*x^7 + x^8 + 5*x^9 + 18*x^10 + 18*x^11 + ...
G.f. = q^47 + q^71 + q^119 + 5*q^143 + 5*q^167 + q^191 + 5*q^215 + ...
a(6) = 5 because ([6], [1,1,1,1,1,1]), ([5,1], [2,1,1,1,1]), ([4,2], [2,2,1,1]), ([4,1,1], [3,1,1,1]), ([3,3], [2,2,2]) are the 5 pairs of partitions of 6 where each partition and its transpose number of odd parts differ by 6, 2, 2, 2, 2 which are of the form 4*k + 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[EllipticTheta[2, 0, q^8]/( 2*QPochhammer[q] * EllipticTheta[3, 0, q^2]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 18 2017 *)
    nmax = 100; CoefficientList[Series[x^2 * Product[(1 + x^(4*k))^3 * (1 + x^(8*k)) * (1 + x^(16*k))^2 / ((1 + x^(2*k))^2 * (1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 05 2025 *)
  • PARI
    {a(n) = local(A); if( n<2, 0, n = n-2; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^8 + A) * eta(x^32 + A))^2 / (eta(x + A) * eta(x^4 + A)^5 * eta(x^16 + A)), n))};

Formula

Expansion of x^2 * psi(x^16) / (f(-x) * phi(x^2)) in powers of x where phi(), psi(), f() are Ramanujan theta functions.
Expansion of q^(1/24) * (eta(q^2) * eta(q^8) * eta(q^32))^2 / (eta(q) * eta(q^4)^5 * eta(q^16)) in powers of q.
Euler transform of period 32 sequence [ 1, -1, 1, 4, 1, -1, 1, 2, 1, -1, 1, 4, 1, -1, 1, 3, 1, -1, 1, 4, 1, -1, 1, 2, 1, -1, 1, 4, 1, -1, 1, 1, ...].
p(n) = t(n) + u(n). f(n) = t(n) - u(n). u(n) = 2*a(n).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (16*n*sqrt(3)). - Vaclav Kotesovec, Jul 05 2025

A246712 Expansion of chi(x^2) / phi(x) in powers of x where phi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 5, -10, 18, -32, 55, -90, 145, -228, 351, -532, 795, -1170, 1703, -2452, 3494, -4934, 6910, -9598, 13238, -18134, 24680, -33390, 44921, -60108, 80029, -106044, 139875, -183706, 240284, -313046, 406319, -525490, 677269, -870010, 1114061, -1422210
Offset: 0

Views

Author

Michael Somos, Sep 02 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + 5*x^2 - 10*x^3 + 18*x^4 - 32*x^5 + 55*x^6 - 90*x^7 + ...
G.f. = 1/q - 2*q^11 + 5*q^23 - 10*q^35 + 18*q^47 - 32*q^59 + 55*q^71 + ...
		

Crossrefs

Cf. A085261.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^4] / QPochhammer[ -x]^2, {x, 0, n}];
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2, x^4] / EllipticTheta[ 3, 0, x], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^4 / (eta(x^8 + A) * eta(x^2 + A)^6), n))};

Formula

Expansion of phi(-x^4) / f(x)^2 in powers of x where phi(), f() are Ramanujan theta functions.
Expansion of q^(1/12) * eta(q)^2 * eta(q^4)^4 / (eta(q^8) * eta(q^2)^6) in powers of q.
Euler transform of period 8 sequence [-2, 4, -2, 0, -2, 4, -2, 1, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = 96^(-1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A085261.
Showing 1-4 of 4 results.