cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A085261 Expansion of chi(x) / phi(x^2) in powers of x where phi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, -2, -1, 5, 3, -9, -5, 18, 10, -30, -16, 53, 29, -85, -44, 139, 73, -215, -110, 335, 172, -502, -253, 755, 382, -1104, -550, 1614, 805, -2312, -1142, 3305, 1631, -4650, -2277, 6525, 3193, -9041, -4395, 12486, 6063, -17070, -8247, 23255, 11218, -31414, -15090, 42289, 20285
Offset: 0

Views

Author

Michael Somos, Jun 23 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x - 2*x^2 - x^3 + 5*x^4 + 3*x^5 - 9*x^6 - 5*x^7 + 18*x^8 + 10*x^9 - ...
G.f. = 1/q + q^23 - 2*q^47 - q^71 + 5*q^95 + 3*q^119 - 9*q^143 - 5*q^167 + 18*q^191 + ...
		

Crossrefs

Programs

  • Maple
    t1:=mul( (1+q^(2*n-1))/((1-q^(4*n))*(1+q^(4*n-2))^2), n=1..100): t2:=series(t1,q,100): f:=n->coeff(t2,q,n); # N. J. A. Sloane, Jan 25 2009
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] / EllipticTheta[ 3, 0, x^2], {x, 0, n}]; (* Michael Somos, Jun 01 2014 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)] / (2 x^(1/8) QPochhammer[ -x^2]^2), {x, 0, n}]; (* Michael Somos, Sep 02 2014 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^8 + A)^2 / eta(x + A) / eta(x^4 + A)^6, n))};
    
  • PARI
    {a(n) = polcoeff( prod( k=1,( n+1)\2, 1 + x^(2*k - 1), 1 + x * O(x^n)) / prod(k=1, (n+2)\4, (1 - x^(4*k)) * (1 + x^(4*k - 2))^2, 1 + x * O(x^n)), n)};

Formula

Expansion of psi(x) / f(x^2)^2 in powers of x where psi(), f() are Ramanujan theta functions. - Michael Somos, Sep 02 2014
Expansion of q^(1/24) * eta(q^2)^4 * eta(q^8)^2 / (eta(q) * eta(q^4)^6) in powers of q.
Euler transform of period 8 sequence [1, -3, 1, 3, 1, -3, 1, 1, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = 24^(-1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A246712. - Michael Somos, Sep 02 2014
G.f.: Product_{k>0} (1 + x^(2*k - 1)) / ((1 - x^(4*k)) * (1 + x^(4*k - 2))^2).

A190101 Number of transpose partition pairs of order n whose number of odd parts differ by numbers of the form 4*k + 2.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 5, 5, 1, 5, 18, 18, 6, 18, 55, 55, 23, 56, 150, 150, 73, 155, 376, 377, 205, 394, 885, 890, 526, 940, 1979, 1996, 1261, 2128, 4240, 4290, 2863, 4611, 8764, 8895, 6213, 9630, 17561, 17877, 12980, 19479, 34243, 34961, 26246, 38310, 65187
Offset: 0

Views

Author

Michael Somos, May 04 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Denoted u(n)/2 by Lossers. t(n) is A097566(n). Stanley's f(n) is A085261(n). Partitions p(n) is A000041(n).
As noted in the solution the number of odd parts of a partition and its conjugate are of the same parity as n. Hence the difference in the number of odd parts must be even and if it is not divisible by 4 then it is of the form 4*k + 2 and the partition is not self conjugate.

Examples

			G.f. = x^2 + x^3 + x^5 + 5*x^6 + 5*x^7 + x^8 + 5*x^9 + 18*x^10 + 18*x^11 + ...
G.f. = q^47 + q^71 + q^119 + 5*q^143 + 5*q^167 + q^191 + 5*q^215 + ...
a(6) = 5 because ([6], [1,1,1,1,1,1]), ([5,1], [2,1,1,1,1]), ([4,2], [2,2,1,1]), ([4,1,1], [3,1,1,1]), ([3,3], [2,2,2]) are the 5 pairs of partitions of 6 where each partition and its transpose number of odd parts differ by 6, 2, 2, 2, 2 which are of the form 4*k + 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[EllipticTheta[2, 0, q^8]/( 2*QPochhammer[q] * EllipticTheta[3, 0, q^2]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 18 2017 *)
    nmax = 100; CoefficientList[Series[x^2 * Product[(1 + x^(4*k))^3 * (1 + x^(8*k)) * (1 + x^(16*k))^2 / ((1 + x^(2*k))^2 * (1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 05 2025 *)
  • PARI
    {a(n) = local(A); if( n<2, 0, n = n-2; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^8 + A) * eta(x^32 + A))^2 / (eta(x + A) * eta(x^4 + A)^5 * eta(x^16 + A)), n))};

Formula

Expansion of x^2 * psi(x^16) / (f(-x) * phi(x^2)) in powers of x where phi(), psi(), f() are Ramanujan theta functions.
Expansion of q^(1/24) * (eta(q^2) * eta(q^8) * eta(q^32))^2 / (eta(q) * eta(q^4)^5 * eta(q^16)) in powers of q.
Euler transform of period 32 sequence [ 1, -1, 1, 4, 1, -1, 1, 2, 1, -1, 1, 4, 1, -1, 1, 3, 1, -1, 1, 4, 1, -1, 1, 2, 1, -1, 1, 4, 1, -1, 1, 1, ...].
p(n) = t(n) + u(n). f(n) = t(n) - u(n). u(n) = 2*a(n).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (16*n*sqrt(3)). - Vaclav Kotesovec, Jul 05 2025

A097567 T(n,k)= count of partitions p such that Abs( Odd(p)-Odd(p') ) = k, where p' is the transpose of p and Odd(p) counts the odd elements in p. Related to Stanley's 'f'.

Original entry on oeis.org

1, 1, 0, 0, 0, 2, 1, 0, 2, 0, 3, 0, 0, 0, 2, 3, 0, 2, 0, 2, 0, 1, 0, 8, 0, 0, 0, 2, 3, 0, 8, 0, 2, 0, 2, 0, 10, 0, 2, 0, 8, 0, 0, 0, 2, 10, 0, 8, 0, 8, 0, 2, 0, 2, 0, 4, 0, 26, 0, 2, 0, 8, 0, 0, 0, 2, 10, 0, 26, 0, 8, 0, 8, 0, 2, 0, 2, 0, 27, 0, 10, 0, 28, 0, 2, 0, 8, 0, 0, 0, 2, 27, 0, 26, 0, 28, 0, 8, 0, 8
Offset: 0

Views

Author

Wouter Meeussen, Aug 28 2004

Keywords

Comments

Table starts {1}, {1,0}, {0,0,2}, {1,0,2,0}, {3,0,0,0,2}, .. where the odd columns are 0. Row sums are A000041 by definition.

Crossrefs

Cf. A097566.

Programs

Showing 1-3 of 3 results.