cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A072340 Number of steps to reach an integer starting with n/3 and iterating the map x -> x*ceiling(x), or -1 if no integer is ever reached.

Original entry on oeis.org

0, 2, 6, 0, 1, 1, 0, 5, 2, 0, 3, 2, 0, 1, 1, 0, 2, 4, 0, 3, 4, 0, 1, 1, 0, 22, 7, 0, 2, 5, 0, 1, 1, 0, 7, 2, 0, 4, 2, 0, 1, 1, 0, 2, 5, 0, 13, 9, 0, 1, 1, 0, 3, 3, 0, 2, 3, 0, 1, 1, 0, 3, 2, 0, 5, 2, 0, 1, 1, 0, 2, 3, 0, 8, 3, 0, 1, 1, 0, 5, 4, 0, 2, 4, 0, 1, 1, 0, 14, 2, 0, 3, 2, 0, 1, 1, 0, 2, 9, 0, 3, 9, 0, 1, 1
Offset: 3

Views

Author

N. J. A. Sloane and J. C. Lagarias, Sep 03 2002

Keywords

Comments

We conjecture that an integer is always reached.
The occurrence of the first 1, 2, 3, 4 etc. is at the indices 7, 4, 13, 20, 10, 5, 29, 76, 50, 452, 244, 830, 49, 91, 319, 2639, 5753, 2215, 6151, 7148, 280, 28, 1783 - R. J. Mathar, Nov 25 2006

References

  • N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.

Crossrefs

Programs

  • Maple
    g := proc(x) local M,t1,t2,t3; M := 3^100; t1 := ceil(x) mod M; t2 := x*t1; t3 := numer(t2) mod M; t3/denom(t2); end;
    f := proc(n) local t1,c; global g; if type(n, 'integer') then RETURN(0); fi; t1 := g(n); c := 1; while not type(t1, 'integer') do c := c+1; t1 := g(t1); od; RETURN(c); end;
    [seq(f(n/3),n=3..120)]; # this gives the correct answer as long as the answer is < 99.
  • Mathematica
    a[n_] := Module[{x = n/3, s = 0}, While[!IntegerQ[x], x *= Ceiling[x]; s++]; s]; Table[a[n], {n, 3, 107}] (* Jean-François Alcover, Jan 27 2019, from PARI *)
  • PARI
    A072340(n)={ local(x,s) ; x=n/3 ; s=0 ; while( type(x)!="t_INT", x *= ceil(x) ; s++ ; ) ; return(s) ; } { for(n=3,10000, print(n," ",A072340(n)) ; ) ; } \\ R. J. Mathar, Nov 25 2006

A085285 Positions where records occur in A072340.

Original entry on oeis.org

3, 4, 5, 28, 1783, 7148, 273223, 398314, 1180939, 1751431, 10970993, 17545207, 20110862, 190270082, 10261454491
Offset: 1

Views

Author

N. J. A. Sloane, Aug 13 2003

Keywords

Crossrefs

Extensions

More terms from Vim Wenders, May 05 2008

A085286 Record values in A072340.

Original entry on oeis.org

0, 2, 6, 22, 23
Offset: 0

Views

Author

N. J. A. Sloane, Aug 13 2003

Keywords

Crossrefs

A117596 Start with x=6/5; repeatedly apply the map x -> x*ceiling(x); sequence gives numerators of the resulting sequence of fractions.

Original entry on oeis.org

6, 12, 36, 288, 16704, 55808064, 622908012647232, 77602878444025201997703040704, 1204441348559630271252918141028336694332989128001036771264, 290135792424028156178425357986052529062710984863337179470336908191924417208517059859206222048920739921330978585792
Offset: 1

Views

Author

N. J. A. Sloane, Apr 07 2006

Keywords

Comments

After 18 terms the fractions become integers, the first of which has 57735 digits.

Examples

			The sequence of fractions begins 6/5, 12/5, 36/5, 288/5, 16704/5, 55808064/5, 622908012647232/5, 77602878444025201997703040704/5, ... The first 17 denominators are 5, the rest are 1.
		

References

  • N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.

Crossrefs

Programs

  • Mathematica
    f[x_] := x*Ceiling[x]; NestList[f, 6/5, 9] // Numerator (* Jean-François Alcover, Nov 18 2013 *)

A117620 Start with x=4/3; repeatedly apply the map x -> (x^2) ceiling(x); sequence gives numerators of the resulting sequence of fractions.

Original entry on oeis.org

4, 32, 4096, 285212672, 3536203627938199896064, 27735467127437590594631628902073909856749798039036448735232
Offset: 1

Views

Author

Jonathan Vos Post, Apr 07 2006

Keywords

Comments

In this approximate cubing, does an iteration eventually yield an integer, after which denominators are 1? Fractions are 4/3, 32/9, 4096/81, 285212672/2187, 3536203627938199896064/1594323, 27735467127437590594631628902073909856749798039036448735232/2541865828329, 8393707510592229745861012598171776416393703955772365464679357805492895042198412632866136478758067686243059846017657263750451410617880163800261945260539460460740608/6461081889226673298932241.
a(9) has 1343 digits, and is too large for a b-file. - Robert Israel, Jun 15 2016

Examples

			a(4) = 285212672 because (4096/81)^2 * ceiling(4096/81) = (4096/81)^2 * ceiling(4096/81) = * ceiling(50.5679012) = (16777216/6561) * 51 = 285212672/2187.
		

Crossrefs

Programs

  • Maple
    x[1]:= 4/3:
    for n from 1 to 9 do x[n+1]:= x[n]^2*ceil(x[n]) od:
    seq(numer(x[i]),i=1..10); # Robert Israel, Jun 15 2016

Extensions

Erroneous term removed by Giovanni Resta, Jun 15 2016

A117636 Start with x=4/3; repeatedly apply the map x -> x ceiling(x^2); sequence gives numerators of the resulting sequence of fractions.

Original entry on oeis.org

4, 8, 64, 9728, 920599396352, 780210979034070658749485424425566208
Offset: 1

Views

Author

Jonathan Vos Post, Apr 08 2006

Keywords

Comments

In this approximate cubing, suggested by T. D. Noe, the 4th iteration yields an integer. Fractions are 4/3, 8/3, 64/3, followed by integers 9728, 920599396352, etc.

Examples

			a(2) = 8, the numerator of (4/3) * ceiling ((4/3)^2) = (4/3) * 2 = 8/3.
a(3) = 64, the numerator of (8/3) * ceiling ((8/3)^2) = (8/3) * 8 = 64/3.
		

Crossrefs

Programs

  • Mathematica
    NestList[# Ceiling[#^2]&,4/3,6]//Numerator (* Harvey P. Dale, Mar 23 2019 *)

Extensions

Data, comments, and examples corrected by Harvey P. Dale, Mar 23 2019
Showing 1-6 of 6 results.