cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A168642 a(n) = (8*2^n + (-1)^n)/3 for n > 0; a(0) = 1.

Original entry on oeis.org

1, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971, 357913941, 715827883, 1431655765, 2863311531
Offset: 0

Views

Author

Klaus Brockhaus, Dec 01 2009

Keywords

Comments

First differences of A085278.

Crossrefs

Cf. A001045 (Jacobsthal sequence), A085278 (expansion of (1+2*x)^2/((1-2*x)*(1-x^2))).

Programs

  • Magma
    [1] cat [ (8*2^n+(-1)^n)/3: n in [1..30] ];
    
  • Mathematica
    Table[(8*2^n +(-1)^n)/3 - 2*Boole[n==0], {n, 0, 40}] (* or *) LinearRecurrence[{1,2}, {1,5,11}, 40] (* G. C. Greubel, Jul 28 2016; Feb 05 2021 *)
  • PARI
    a(n)=([0,1; 2,1]^n*[1;5])[1,1] \\ Charles R Greathouse IV, Jul 29 2016
    
  • Sage
    [1]+[(2^(n+3) +(-1)^n)/3 for n in (1..40)] # G. C. Greubel, Feb 05 2021

Formula

a(n) = A001045(n+3) for n > 0.
a(n) = a(n-1) + 2*a(n-2) for n > 2; a(0) = 1, a(1) = 5, a(2) = 11.
G.f.: (1 + 2*x)^2/((1+x)*(1-2*x)).
E.g.f.: (8*exp(2*x) - 6 + exp(-x))/3. - G. C. Greubel, Jul 28 2016

A085277 Expansion of (1+x)^2/((1-2x)(1-3x)).

Original entry on oeis.org

1, 7, 30, 108, 360, 1152, 3600, 11088, 33840, 102672, 310320, 935568, 2815920, 8466192, 25435440, 76380048, 229287600, 688157712, 2065062960, 6196368528, 18591464880, 55779113232, 167346776880, 502059205008, 1506215363760
Offset: 0

Views

Author

Paul Barry, Jun 25 2003

Keywords

Comments

Inverse binomial transform of A016208. Binomial transform of A085278.

Programs

  • Mathematica
    CoefficientList[Series[(1+x)^2/((1-2x)(1-3x)),{x,0,30}],x] (* or *) Join[{1},LinearRecurrence[{5,-6},{7,30},30]] (* Harvey P. Dale, Sep 30 2012 *)

Formula

a(n)=16*3^n/3+0^n/6-9*2^n/2.
a(0)=1, a(1)=7, a(2)=30, a(n)=5*a(n-1)-6*a(n-2). - Harvey P. Dale, Sep 30 2012
Showing 1-2 of 2 results.