cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A085302 a(n) is the partial sum of A085301(j) from j=1 to n; a(n)-1 shows the number of factorials below n-th primorial.

Original entry on oeis.org

2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 92, 93
Offset: 1

Views

Author

Labos Elemer, Jun 26 2003

Keywords

Examples

			For n = 26: a(26) = 34 since there are 33 factorials below the 26th primorial.
		

Crossrefs

Variant of A073071 and A048964.

Programs

  • Mathematica
    fn[n_] := Module[{k = 1, r = n}, While[r >= 1, k++; r /= k]; k - 1]; prim[n_] := Times @@ Prime[Range[n]]; a[1] = 2; a[n_] := fn[prim[n]] + 1; Array[a, 100] (* Amiram Eldar, Feb 09 2025 *)

A085303 Positions of 2 in A085301.

Original entry on oeis.org

1, 2, 7, 10, 14, 17, 20, 23, 27, 30, 33, 37, 40, 43, 47, 50, 53, 57, 60, 63, 67, 70, 73, 77, 80, 84, 87, 90, 94, 97, 101, 104, 108, 111, 114, 118, 121, 125, 128, 132, 135, 139, 142, 146, 149, 153, 156, 160, 164, 167, 171, 174, 178, 181, 185, 188, 192, 196, 199, 203
Offset: 1

Views

Author

Labos Elemer, Jun 26 2003

Keywords

Comments

Numbers k such that A085301(k) = 2, i.e., between primorial(k-1) and primorial(k) there are two distinct factorial numbers.

Examples

			10 is a term since between the 9th and the 10th primorials there are two factorials: 12! and 13!.
14 is a term since between the 13th and the 14th primorials there are two factorials: 17! and 18!.
584 is a term since between the 583rd and the 584th primorials there are two factorials: 745! and 746!.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Module[{k = 1, r = Times @@ Prime[Range[n]]}, While[r >= 1, k++; r /= k]; k - 1]; q[n_] := f[n] - f[n - 1] == 2; q[1] = q[2] = True; Select[Range[210], q] (* Amiram Eldar, Feb 18 2025 *)
  • PARI
    f(n) = {my(k = 1); while(n >= 1, k++; n /= k); k-1;}
    list(lim) = {my(c = 1, f1 = 1, r = 1, k = 0); print1("1, 2, "); forprime(p = 2, lim, k++; r* = p; f2 = f(r); if(f2 == f1 + 2, print1(k, ", ")); f1 = f2);} \\ Amiram Eldar, Feb 18 2025

Formula

Solutions x to A085301(x) = 2.

A106035 The "Octanacci" sequence: Trajectory of 1 under the morphism 1->{1,2,1}, 2->{1}.

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2
Offset: 0

Views

Author

Roger L. Bagula, May 05 2005

Keywords

Comments

Silver mean chain substitution sequence: characteristic polynomial = -x^2+2*x+1.
A space-filling lattice is given by: bb = aa /. 1 -> {-0.4142135623730951, 2.414213562373095} /. 2 -> {1,-0.414213562373095`} /. 3 -> 0; ListPlot[FoldList[Plus, {0, 0}, bb], PlotRange -> All, PlotJoined -> False, Axes -> False];
The sequence is S_oo where S_0 = 2, S_1 = 1; S_{n+2} = S_{n+1} S_n S_{n+1}. Used to construct the "labyrinth" tiling. - N. J. A. Sloane, Mar 13 2019

Crossrefs

See A324772 for version over {0,1}.

Programs

  • Maple
    f(1):= (1, 2, 1): f(2):= (1): A:= [1]:
    for i from 1 to 6 do A:= map(f, A) od:
    A; # - N. J. A. Sloane, Mar 13 2019
  • Mathematica
    s[1] = {1, 2, 1}; s[2] = {1}; s[3] = {}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[6]
    Nest[Function[l, Flatten[l/.{1->{1, 2, 1}, 2->{1}}]], {1}, 6] (* Vincenzo Librandi, Mar 14 2019 *)
    SubstitutionSystem[{1->{1,2,1},2->{1}},{1},{6}]//Flatten (* Harvey P. Dale, Nov 20 2021 *)
Showing 1-3 of 3 results.