A085305 Numbers such that first reversing digits and then squaring equals the result of first squaring and then reversing.
0, 1, 2, 3, 11, 12, 13, 21, 22, 31, 101, 102, 103, 111, 112, 113, 121, 122, 201, 202, 211, 212, 221, 301, 311, 1001, 1002, 1003, 1011, 1012, 1013, 1021, 1022, 1031, 1101, 1102, 1103, 1111, 1112, 1113, 1121, 1122, 1201, 1202, 1211, 1212, 1301, 2001, 2002, 2011
Offset: 1
Examples
n = 13 is a term because 31^2 = 961 = rev(169) = rev(13^2) = rev(rev(31)^2).
References
- David Wells, The Dictionary of Curious and Interesting Numbers. London: Penguin Books (1997): p. 124.
Links
Programs
-
Magma
[0] cat [ m: n in [1..1810] | Reverse(Intseq(m^2)) eq Intseq(Seqint(Reverse(Intseq(m)))^2) where m is n+Floor((n-1)/9) ]; // Bruno Berselli, Jul 08 2011
-
Mathematica
rt[x_] := tn[Reverse[IntegerDigits[x]]] Do[s = rt[n^2]; s1=rt[n]^2; If[Equal[s, s1]&&!Equal[Mod[n, 10], 0], Print[{n, s, rt[s1]}]], {n, 0, 1000000}] (* Second program: *) Select[Range[0, 1999], Mod[#,10] != 0 && FromDigits[Reverse[IntegerDigits[#^2]]] == FromDigits[Reverse[IntegerDigits[#]]]^2 &] (* Alonso del Arte, Oct 08 2012; corrected by Jean-François Alcover, Jan 11 2021 *)
-
PARI
isok(x) = (x==0) || ((x%10) && fromdigits(Vecrev(digits(x^2))) == fromdigits(Vecrev(digits(x)))^2); \\ Michel Marcus, Jan 11 2021
Formula
Solutions to rev(x^2) = rev(x)^2.
Comments