cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085305 Numbers such that first reversing digits and then squaring equals the result of first squaring and then reversing.

Original entry on oeis.org

0, 1, 2, 3, 11, 12, 13, 21, 22, 31, 101, 102, 103, 111, 112, 113, 121, 122, 201, 202, 211, 212, 221, 301, 311, 1001, 1002, 1003, 1011, 1012, 1013, 1021, 1022, 1031, 1101, 1102, 1103, 1111, 1112, 1113, 1121, 1122, 1201, 1202, 1211, 1212, 1301, 2001, 2002, 2011
Offset: 1

Views

Author

Labos Elemer, Jun 27 2003

Keywords

Comments

Only digits {0, 1, 2, 3} seem to arise.
Numbers (other than 0) that end in zero are excluded. - N. J. A. Sloane, Mar 20 2010

Examples

			n = 13 is a term because 31^2 = 961 = rev(169) = rev(13^2) = rev(rev(31)^2).
		

References

  • David Wells, The Dictionary of Curious and Interesting Numbers. London: Penguin Books (1997): p. 124.

Crossrefs

Cf. A085306. See A061909 for another version.

Programs

  • Magma
    [0] cat [ m: n in [1..1810] | Reverse(Intseq(m^2)) eq Intseq(Seqint(Reverse(Intseq(m)))^2) where m is n+Floor((n-1)/9) ];  // Bruno Berselli, Jul 08 2011
    
  • Mathematica
    rt[x_] := tn[Reverse[IntegerDigits[x]]] Do[s = rt[n^2]; s1=rt[n]^2; If[Equal[s, s1]&&!Equal[Mod[n, 10], 0], Print[{n, s, rt[s1]}]], {n, 0, 1000000}]
    (* Second program: *)
    Select[Range[0, 1999], Mod[#,10] != 0 && FromDigits[Reverse[IntegerDigits[#^2]]] == FromDigits[Reverse[IntegerDigits[#]]]^2 &] (* Alonso del Arte, Oct 08 2012; corrected by Jean-François Alcover, Jan 11 2021 *)
  • PARI
    isok(x) = (x==0) || ((x%10) && fromdigits(Vecrev(digits(x^2))) == fromdigits(Vecrev(digits(x)))^2); \\ Michel Marcus, Jan 11 2021

Formula

Solutions to rev(x^2) = rev(x)^2.