A085307 a(1) = 1; for n > 1, concatenate distinct prime factors of n in decreasing order.
1, 2, 3, 2, 5, 32, 7, 2, 3, 52, 11, 32, 13, 72, 53, 2, 17, 32, 19, 52, 73, 112, 23, 32, 5, 132, 3, 72, 29, 532, 31, 2, 113, 172, 75, 32, 37, 192, 133, 52, 41, 732, 43, 112, 53, 232, 47, 32, 7, 52, 173, 132, 53, 32, 115, 72, 193, 292, 59, 532, 61, 312, 73, 2, 135, 1132, 67
Offset: 1
Examples
m = 100 = 2*2*5*5 -> {2,5} -> {5,2} -> 52 = a(100); a(510510) = 1713117532, while A084317(510510) = 2357111317.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Maple
with(numtheory): a:= n-> parse(cat(`if`(n=1, 1, sort([factorset(n)[]], `>`)[]))): seq(a(n), n=1..100); # Alois P. Heinz, May 02 2016
-
Mathematica
f[n_] := FromDigits[ Flatten[ IntegerDigits /@ Reverse[ Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]]]]; Table[ f[n], {n, 1, 70}] Table[FromDigits[Flatten[IntegerDigits/@Reverse[FactorInteger[n][[All, 1]]]]],{n,90}] (* Harvey P. Dale, Oct 10 2017 *)
Formula
Algorithm:
1. factorize n;
2. order prime factors by decreasing size;
3. concatenate prime factors and interpret the result as a decimal number.
Extensions
Edited by Robert G. Wilson v, Jul 15 2003
Comments