cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085329 Non-palindromic solutions to sigma(R(n)) = sigma(n), where R = A004086 is digit-reversal.

Original entry on oeis.org

528, 825, 1561, 1651, 4064, 4604, 5346, 5795, 5975, 6435, 15092, 15732, 21252, 23751, 25212, 29051, 34536, 38115, 39325, 39516, 51183, 52393, 53295, 53768, 59235, 61593, 63543, 64328, 69368, 70577, 77507, 81558, 82346, 85518, 86396
Offset: 1

Views

Author

Labos Elemer, Jul 04 2003

Keywords

Comments

Without the non-palindromic condition, the first 62 terms would be identical to the list of palindromes A002113. - M. F. Hasler, May 13 2025

Examples

			sigma(528) = sigma(825) = 1488.
		

Crossrefs

Cf. A000203 (sigma), A004086 (R), A350867 (similar with d = sigma_0).

Programs

  • Mathematica
    nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] red[x_] := Reverse[IntegerDigits[x]] Do[s=DivisorSigma[1, n]; s1=DivisorSigma[1, tn[red[n]]]; If[Equal[s, s1]&&!Equal[n, tn[red[n]]], Print[{n, s}]], {n, 1, 1000000}]
    srnQ[n_]:=Module[{idn=IntegerDigits[n],ridn},ridn=Reverse[idn];idn!=ridn && DivisorSigma[1,n]==DivisorSigma[1,FromDigits[ridn]]]; Select[Range[ 100000], srnQ] (* Harvey P. Dale, Oct 25 2011 *)
  • PARI
    select( {is_A085329(n, r=A004086(n))=sigma(n)==sigma(r)&&n!=r}, [1..50000]) \\ M. F. Hasler, May 13 2025
    
  • Python
    from sympy import divisor_sigma as sigma
    def is_A085329(n): return sigma(n)==sigma(r:=int(str(n)[::-1])) and n!=r # M. F. Hasler, May 13 2025

Formula

Solutions to (A000203(x) = A000203(A004086(x)) and A004086(x) <> x).