cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085361 Decimal expansion of the number c = Sum_{n>=1} (zeta(n+1)-1)/n.

Original entry on oeis.org

7, 8, 8, 5, 3, 0, 5, 6, 5, 9, 1, 1, 5, 0, 8, 9, 6, 1, 0, 6, 0, 2, 7, 6, 3, 2, 3, 4, 5, 4, 5, 5, 4, 6, 6, 6, 4, 7, 2, 7, 4, 9, 6, 6, 8, 2, 2, 3, 2, 8, 1, 6, 4, 9, 7, 5, 5, 1, 5, 6, 4, 0, 2, 3, 0, 1, 7, 8, 0, 6, 4, 3, 5, 6, 3, 3, 0, 1, 6, 2, 2, 8, 7, 4, 7, 1, 5, 9, 2, 1, 3, 3, 2, 2, 4, 3, 1, 9, 6, 7, 5, 6
Offset: 0

Views

Author

Eric W. Weisstein, Jun 25 2003

Keywords

Comments

The Alladi-Grinstead constant (A085291) is exp(c-1).

Examples

			0.78853056591150896106027632345455466647274966822328164975515640230178...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(120)); L:=RiemannZeta(); (&+[(Evaluate(L,n+1)-1)/n: n in [1..1000]]); // G. C. Greubel, Nov 15 2018
  • Maple
    evalf(sum((Zeta(n+1)-1)/n, n=1..infinity), 120); # Vaclav Kotesovec, Dec 11 2015
    evalf(Sum(-(-1)^k*Zeta(1, k), k = 2..infinity), 120); # Vaclav Kotesovec, Jun 18 2021
  • Mathematica
    Sum[(-1+Zeta[1+n])/n,{n,Infinity}]
    NSum[Log[k]/(k*(k+1)), {k, 1, Infinity}, WorkingPrecision -> 120, NSumTerms ->5000, Method -> {NIntegrate, MaxRecursion -> 100}] (* Vaclav Kotesovec, Dec 11 2015 *)
  • PARI
    suminf(n=1,(zeta(n+1)-1-2^(-n-1))/n)+log(2)/2 \\ Charles R Greathouse IV, Feb 20 2012
    
  • PARI
    sumalt(k=2, -(-1)^k * zeta'(k)) \\ Vaclav Kotesovec, Jun 17 2021
    
  • Sage
    import mpmath
    mpmath.mp.pretty=True; mpmath.mp.dps=108 #precision
    mpmath.nsum(lambda n: (-1+mpmath.zeta(1+n))/n, [1,mpmath.inf]) # Peter Luschny, Jul 14 2012
    
  • Sage
    numerical_approx(sum((zeta(k+1)-1)/k for k in [1..1000]), digits=120) # G. C. Greubel, Nov 15 2018
    

Formula

Equals Sum_{n>=2} log(n/(n-1))/n = Sum_{n>=1, k>=2} 1/(n*k^(n+1)). [From Mathworld links]
Equals -Sum_{k>=2} (-1)^k * zeta'(k). - Vaclav Kotesovec, Jun 17 2021
Equals log(A245254) = Sum_{k>=1} log(k)/(k*(k+1)). - Amiram Eldar, Jun 27 2021
Equals -log(A242624). - Amiram Eldar, Feb 06 2022