cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085362 a(0)=1; for n>0, a(n) = 2*5^(n-1) - (1/2)*Sum_{i=1..n-1} a(i)*a(n-i).

Original entry on oeis.org

1, 2, 8, 34, 150, 678, 3116, 14494, 68032, 321590, 1528776, 7301142, 35003238, 168359754, 812041860, 3926147730, 19022666310, 92338836390, 448968093320, 2186194166950, 10659569748370, 52037098259090, 254308709196660
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jun 25 2003

Keywords

Comments

Number of bilateral Schroeder paths (i.e. lattice paths consisting of steps U=(1,1), D=(1,-1) and H=(2,0)) from (0,0) to (2n,0) and with no H-steps at even (zero, positive or negative) levels. Example: a(2)=8 because we have UDUD, UUDD, UHD, UDDU and their reflections in the x-axis. First differences of A026375. - Emeric Deutsch, Jan 28 2004
From G. C. Greubel, May 22 2020: (Start)
This sequence is part of a class of sequences, for m >= 0, with the properties:
a(n) = 2*m*(4*m+1)^(n-1) - (1/2)*Sum_{k=1..n-1} a(k)*a(n-k).
a(n) = Sum_{k=0..n} m^k * binomial(n-1, n-k) * binomial(2*k, k).
a(n) = (2*m) * Hypergeometric2F1(-n+1, 3/2; 2; -4*m), for n > 0.
n*a(n) = 2*((2*m+1)*n - (m+1))*a(n-1) - (4*m+1)*(n-2)*a(n-2).
(4*m + 1)^n = Sum_{k=0..n} Sum_{j=0..k} a(j)*a(k-j).
G.f.: sqrt( (1 - t)/(1 - (4*m+1)*t) ).
This sequence is the case of m=1. (End)

Crossrefs

Bisection of A026392.
Essentially the same as A026387.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt((1-x)/(1-5*x)) )); // G. C. Greubel, May 23 2020
    
  • Maple
    a := n -> `if`(n=0,1,2*hypergeom([3/2, 1-n], [2], -4)):
    seq(simplify(a(n)), n=0..22); # Peter Luschny, Jan 30 2017
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-5x)], {x, 0, 25}], x]
  • PARI
    my(x='x+O('x^66)); Vec(sqrt((1-x)/(1-5*x))) \\ Joerg Arndt, May 10 2013
    
  • Sage
    def A085362_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( sqrt((1-x)/(1-5*x)) ).list()
    A085362_list(30) # G. C. Greubel, May 23 2020

Formula

G.f.: sqrt((1-x)/(1-5*x)).
Sum_{i=0..n} (Sum_{j=0..i} a(j)*a(i-j)) = 5^n.
D-finite with recurrence: a(n) = (2*(3*n-2)*a(n-1)-5*(n-2)*a(n-2))/n; a(0)=1, a(1)=2. - Emeric Deutsch, Jan 28 2004
a(n) ~ 2*5^(n-1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 14 2012
G.f.: G(0), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)* (2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 22 2013
a(n) = Sum_{k=0..n} binomial(2*k,k)*binomial(n-1,n-k). - Vladimir Kruchinin, May 30 2016
a(n) = 2*hypergeom([3/2, 1-n], [2], -4) for n>0. - Peter Luschny, Jan 30 2017
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (n+k) * a(k). - Seiichi Manyama, Mar 28 2023
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} (-1)^k * 5^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n-1,n-k). (End)