A085363 a(0)=1, for n>0: a(n) = 4*9^(n-1) - (1/2)*Sum_{i=1..n-1} a(i)*a(n-i).
1, 4, 28, 212, 1676, 13604, 112380, 940020, 7936620, 67494980, 577309148, 4961187092, 42801458764, 370478720356, 3215827927228, 27982214082612, 244004165618220, 2131710838837380, 18654504783815580, 163488269572628820
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Kees A.S. Immink and Kui Cai, Properties and constructions of constrained codes for DNA-based data storage, IEEE Access, vol. 8, no. 1, pp. 49523-49531, 2020, page 49529.
- John Machacek, Lattice walks ending on a coordinate hyperplane avoiding backtracking and repeats, preprint arXiv:2105.02417 [math.CO], 2021.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt((1-x)/(1-9*x)) )); // G. C. Greubel, May 23 2020 -
Maple
seq(coeff(series(sqrt((1-x)/(1-9*x)), x, n+1), x, n), n = 0..30); # G. C. Greubel, May 23 2020
-
Mathematica
CoefficientList[Series[Sqrt[(1-x)/(1-9x)], {x, 0, 25}], x]
-
PARI
my(x='x+O('x^66)); Vec(sqrt((1-x)/(1-9*x)) ) \\ Joerg Arndt, May 10 2013
-
Sage
def A085363_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( sqrt((1-x)/(1-9*x)) ).list() A085363_list(30) # G. C. Greubel, May 23 2020
Formula
G.f.: sqrt((1-x)/(1-9*x)).
Sum_{i=0..n} Sum_{j=0..i} a(j)*a(i-j) = 9^n.
From Vladeta Jovovic, Oct 10 2003: (Start)
First differences of A084771.
a(n) = Sum_{k=1..n} 2^k * binomial(n-1, k-1) * binomial(2*k, k). (End)
D-finite with recurrence n*a(n) = (10*n-6)*a(n-1) - (9*n-18)*a(n-2). - Vladeta Jovovic, Jul 16 2004
a(n) ~ 2*sqrt(2)*3^(2*n-1)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 14 2012
a(0) = 1; a(n) = (4/n) * Sum_{k=0..n-1} (n+k) * a(k). - Seiichi Manyama, Mar 28 2023
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = (1/4)^n * Sum_{k=0..n} 9^k * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} (-2)^k * 9^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n-1,n-k). (End)
Comments