cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A085409 Sum of three solutions of the Diophantine equation x^2 - y^2 = z^3.

Original entry on oeis.org

0, 12, 84, 270, 624, 1200, 2052, 3234, 4800, 6804, 9300, 12342, 15984, 20280, 25284, 31050, 37632, 45084, 53460, 62814, 73200, 84672, 97284, 111090, 126144, 142500, 160212, 179334, 199920, 222024, 245700, 271002, 297984, 326700, 357204, 389550, 423792, 459984
Offset: 0

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Aug 13 2003

Keywords

Comments

Parametric representation of the solution is (x, y, z) = (6n^3, 3n^3, 3n^2), thus getting a(n) = 9n^3 + 3n^2.

Crossrefs

Cf. A085377.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( 6*x*(2 + 6*x + x^2) /(1 - x)^4)); // Marius A. Burtea, Oct 25 2019
  • Mathematica
    Table[9n^3 + 3n^2, {n, 0, 34}]
  • PARI
    concat(0, Vec(6*x*(2 + 6*x + x^2) /(1 - x)^4 + O(x^40))) \\ Colin Barker, Oct 25 2019
    

Formula

a(n) = 9*n^3 + 3*n^2.
From Colin Barker, Oct 25 2019: (Start)
G.f.: 6*x*(2 + 6*x + x^2) /(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.
(End)
From Amiram Eldar, Jan 10 2023: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/18 + sqrt(3)*Pi/6 + 3*log(3)/2 - 3.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/36 - Pi/sqrt(3) - 2*log(2) + 3. (End)

Extensions

More terms from Robert G. Wilson v, Aug 16 2003

A085479 Product of three solutions of the Diophantine equation x^3 - y^3 = z^2.

Original entry on oeis.org

728, 93184, 1592136, 11927552, 56875000, 203793408, 599539304, 1526726656, 3482001432, 7280000000, 14186660488, 26085556224, 45680920376, 76741030912, 124385625000, 195421011968, 298726553944, 445696183296, 650738625992
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Aug 15 2003

Keywords

Comments

Parametric representation of the solution is (x,y,z) = (8n^2, 7n^2, 13n^3), thus getting a(n) = 728*n^7.

Crossrefs

Cf. A001015 (n^7), A085377.

Programs

  • Mathematica
    728*Range[20]^7 (* Harvey P. Dale, May 27 2012 *)
  • PARI
    Vec(728*x*(1 + 120*x + 1191*x^2 + 2416*x^3 + 1191*x^4 + 120*x^5 + x^6) / (1 - x)^8 + O(x^25)) \\ Colin Barker, Oct 25 2019

Formula

a(n) = 728*n^7.
From Colin Barker, Oct 25 2019: (Start)
G.f.: 728*x*(1 + 120*x + 1191*x^2 + 2416*x^3 + 1191*x^4 + 120*x^5 + x^6) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)

Extensions

More terms from Matthew Conroy, Jan 16 2006
Showing 1-2 of 2 results.