cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085392 a(n) = largest prime divisor of n, or 1 if n is 1 or a prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 2, 3, 5, 1, 3, 1, 7, 5, 2, 1, 3, 1, 5, 7, 11, 1, 3, 5, 13, 3, 7, 1, 5, 1, 2, 11, 17, 7, 3, 1, 19, 13, 5, 1, 7, 1, 11, 5, 23, 1, 3, 7, 5, 17, 13, 1, 3, 11, 7, 19, 29, 1, 5, 1, 31, 7, 2, 13, 11, 1, 17, 23, 7, 1, 3, 1, 37, 5, 19, 11, 13, 1, 5, 3, 41, 1, 7, 17, 43, 29, 11, 1, 5, 13
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a085392 = a006530 . a032742  -- Reinhard Zumkeller, Oct 03 2012
    
  • Maple
    A085392 := proc(n) max( op(numtheory[divisors](n) minus {n})) ; A006530(%) ;
    end proc:
    seq(A085392(n),n=1..50) ; # R. J. Mathar, Jun 26 2011
  • Mathematica
    PrimeFactors[n_] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; f[n_] := Block[{gpd = Divisors[n][[ -2]]}, If[gpd == 1, 1, PrimeFactors[gpd][[ -1]] ]]; Table[ If[n == 1, 1, f[n]], {n, 1, 95}]
    Join[{1},Table[FactorInteger[Divisors[n][[-2]]][[-1,1]],{n,2,120}]] (* Harvey P. Dale, Jul 02 2019 *)
    a[n_] := If[CompositeQ[n], FactorInteger[n][[-1, 1]], 1]; Array[a, 100] (* Amiram Eldar, Jun 19 2022 *)
  • PARI
    gpd(n) = if (n==1, 1, n/factor(n)[1,1]);
    gpf(n) = if (n==1, 1, vecmax(factor(n)[,1]));
    a(n) = gpf(gpd(n)); \\ Michel Marcus, Apr 08 2018

Formula

a(n) = A006530(A032742(n)). - R. J. Mathar, Jun 26 2011

Extensions

Definition corrected by N. J. A. Sloane, Jul 02 2019. Also deleted an incorrect comment.