A085397 Numbers that are not perfect powers and whose squarefree part is not congruent to 1 (mod 4).
2, 3, 6, 7, 10, 11, 12, 14, 15, 18, 19, 22, 23, 24, 26, 28, 30, 31, 34, 35, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51, 54, 55, 56, 58, 59, 60, 62, 63, 66, 67, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 106, 107, 108
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- Eric Weisstein's World of Mathematics, Artin's Constant.
Programs
-
Maple
f:= proc(n) local F,x; F:= ifactors(n)[2]; if igcd(seq(f[2],f=F)) > 1 then return false fi; x:= mul(f[1], f = select(t -> t[2]::odd, F)); x mod 4 <> 1; end proc: select(f, [$1..200]); # Robert Israel, Mar 20 2016
-
Mathematica
fi[n_] := fi[n] = FactorInteger[n]; perfectPowerQ[n_] := Length[uf = Union[ fi[n][[All, 2]]]] == 1 && uf[[1]] >= 2; SquareFreePart[n_] := Times @@ Apply[Power, ({#[[1]], Mod[#[[2]], 2]} & ) /@ fi[n], {1}]; ok[n_] := ! perfectPowerQ[n] && Mod[ SquareFreePart[n], 4] != 1; Select[ Range[110], ok] (* Jean-François Alcover, Jan 20 2012 *)
-
PARI
isok(n) = !ispower(n) && ((core(n) % 4) != 1); \\ Michel Marcus, Mar 19 2016
Comments