A085438 a(n) = Sum_{i=1..n} binomial(i+1,2)^3.
1, 28, 244, 1244, 4619, 13880, 35832, 82488, 173613, 339988, 627484, 1102036, 1855607, 3013232, 4741232, 7256688, 10838265, 15838476, 22697476, 31958476, 44284867, 60479144, 81503720, 108503720, 142831845, 186075396, 240085548, 307008964, 389321839
Offset: 1
Examples
a(10) = (90*(10^7)+630*(10^6)+1638*(10^5)+1890*(10^4)+840*(10^3)-48*(10))/5040 = 339988.
References
- Elisabeth Busser and Gilles Cohen, Neuro-Logies - "Chercher, jouer, trouver", La Recherche, April 1999, No. 319, page 97.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Crossrefs
Programs
-
Magma
[(90*n^7 +630*n^6 +1638*n^5 +1890*n^4+ 840*n^3 -48*n)/ Factorial(7): n in [1..30]]; // G. C. Greubel, Nov 22 2017
-
Mathematica
Table[(90*n^7 + 630*n^6 + 1638*n^5 + 1890*n^4 + 840*n^3 - 48*n)/7!, {n, 1, 50}] (* G. C. Greubel, Nov 22 2017 *)
-
PARI
Vec(x*(x^4+20*x^3+48*x^2+20*x+1)/(x-1)^8 + O(x^100)) \\ Colin Barker, May 02 2014
-
PARI
a(n) = sum(i=1, n, binomial(i+1, 2)^3); \\ Michel Marcus, Nov 22 2017
Formula
a(n) = (90*n^7 +630*n^6 +1638*n^5 +1890*n^4+ 840*n^3 -48*n)/7!.
a(n) = (C(n+2, 3)/35)*(35 +210*C(n-1, 1) +399*C(n-1, 2) +315*C(n-1, 3) +90*C(n-1, 4)).
G.f.: x*(x^4+20*x^3+48*x^2+20*x+1) / (x-1)^8. - Colin Barker, May 02 2014
Extensions
More terms from Colin Barker, May 02 2014
Formula and example edited by Colin Barker, May 02 2014