cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085491 Number of ways to write n as sum of distinct divisors of n+1.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 5, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 5, 0, 0, 0, 3, 0, 2, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 31, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 26, 0, 0, 0, 0, 0, 1, 0, 6, 0, 0, 0, 23, 0, 0, 0, 1, 0, 20, 0, 0, 0, 0, 0, 21, 0, 0, 0, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Comments

a(A085492(n)) = 0; a(A085493(n)) > 0; a(A085494(n)) = 1.

Examples

			n=11, divisors of 12=11+1 that are not greater 11: {1,2,3,4,6}, 11=6+5=6+4+1, therefore a(11)=2.
		

Crossrefs

Cf. A085496.

Programs

  • Maple
    a:= proc(m) option remember; local b, l; b, l:=
          proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
            b(n, i-1)+`if`(l[i]>n, 0, b(n-l[i], i-1))))
          end, sort([numtheory[divisors](m+1)[]]);
          forget(b); b(m, nops(l)-1)
        end:
    seq(a(n), n=0..120);  # Alois P. Heinz, Mar 12 2019
  • Mathematica
    a[n_] := Module[{dd}, dd = Select[Divisors[n+1], # <= n&]; Select[ IntegerPartitions[n, dd // Length, dd], Reverse[#] == Union[#]&] // Length]; Array[a, 100, 0] (* Jean-François Alcover, Mar 12 2019 *)

Formula

a(n) = [x^n] Product_{d divides (n+1)} (1 + x^d). - Alois P. Heinz, Feb 04 2023

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 12 2019