cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A085493 Numbers k having partitions into distinct divisors of k + 1.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 19, 23, 27, 29, 31, 35, 39, 41, 47, 53, 55, 59, 63, 65, 69, 71, 77, 79, 83, 87, 89, 95, 99, 103, 107, 111, 119, 125, 127, 131, 139, 143, 149, 155, 159, 161, 167, 175, 179, 191, 195, 197, 199, 203, 207, 209, 215, 219, 223, 227, 233, 239
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Comments

A085491(a(n)) > 0; complement of A085492.

Examples

			The divisors of 42 are 1, 2, 3, 6, 7, 14, 21, 42. Since 6 + 14 + 21 = 41, 41 is in the sequence.
The divisors of 43 are 1, 43. Since no selection of these divisors can possibly add up to 42, this means that 42 is not in the sequence.
		

Crossrefs

Programs

  • Maple
    q:= proc(m) option remember; local b, l; b, l:=
          proc(n, i) option remember; n=0 or i>=1 and
            (l[i]<=n and b(n-l[i], i-1) or b(n, i-1))
          end, sort([numtheory[divisors](m+1)[]]);
          b(m, nops(l)-1)
        end:
    select(q, [$1..300])[];  # Alois P. Heinz, Feb 04 2023
  • Mathematica
    divNextableQ[n_] := TrueQ[Length[Select[Subsets[Divisors[n + 1]], Plus@@# == n &]] > 0]; Select[Range[100], divNextableQ] (* Alonso del Arte, Jan 07 2023 *)
  • Scala
    def divisors(n: Int): IndexedSeq[Int] = (1 to n).filter(n % _ == 0)
    def divPartSums(n: Int): List[Int] = divisors(n).toSet.subsets.toList.map(_.sum)
    (1 to 128).filter(n => divPartSums(n + 1).contains(n)) // Alonso del Arte, Jan 26 2023

Formula

{k > 0 : 0 < [x^k] Product_{d divides (k+1)} (1+x^d)}. - Alois P. Heinz, Feb 04 2023

A085496 Number of ways to write prime(n) as sum of distinct divisors of prime(n)+1.

Original entry on oeis.org

0, 1, 1, 1, 2, 0, 1, 1, 5, 3, 1, 0, 2, 0, 10, 1, 31, 0, 0, 26, 0, 6, 23, 20, 0, 0, 1, 13, 0, 0, 1, 15, 0, 14, 9, 0, 0, 0, 190, 0, 713, 0, 42, 0, 7, 9, 0, 9, 6, 0, 6, 2148, 0, 509, 0, 120, 109, 1, 0, 0, 0, 4, 6, 100, 0, 0, 0, 0, 2, 4, 0, 21897, 1, 0, 3, 85, 79, 0, 0, 0, 19172, 0, 1130
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Comments

a(n) = A085491(A000040(n));
a(A085498(n)) > 0.

Examples

			n=5, divisors of A000040(5)+1=11+1=12 that are not greater 11: {1,2,3,4,6}, 11=6+4+1=6+3+2, therefore a(5)=2.
		

Programs

  • Maple
    b:= proc(n, i) option remember; global l;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+
          `if`(l[i]>n, 0, b(n-l[i], i-1))))
        end:
    a:= proc(n) global l; local p;
          forget(b);
          p:= ithprime(n);
          l:= sort([numtheory[divisors](p+1)[]]);
          b(p, nops(l)-1)
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, May 01 2012
  • Mathematica
    Count[Total/@Subsets[Most[Divisors[Prime[#]+1]]],Prime[#]]&/@Range[90] (* Harvey P. Dale, Jan 31 2016 *)

A085492 Numbers n having no partition into distinct divisors of n+1.

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 12, 13, 14, 16, 18, 20, 21, 22, 24, 25, 26, 28, 30, 32, 33, 34, 36, 37, 38, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 60, 61, 62, 64, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 80, 81, 82, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Comments

A085491(a(n)) = 0; complement of A085493;
A006093 is a subsequence (prime minus 1).

Crossrefs

Cf. A085497.

A085494 Numbers k having exactly one partition into distinct divisors of k+1.

Original entry on oeis.org

1, 3, 5, 7, 15, 17, 19, 27, 31, 53, 63, 65, 69, 77, 87, 99, 103, 127, 161, 195, 255, 271, 303, 367, 413, 463, 485, 495, 499, 511, 579, 649, 725, 819, 859, 867, 967, 1013, 1023, 1035, 1147, 1183, 1311, 1315, 1351, 1371, 1375, 1457, 1483, 1503, 1695, 1887, 1951
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Comments

Includes every 2^k-1 and is therefore infinite. - David W. Wilson, Feb 02 2006

Crossrefs

Subsequence of A085493.

Programs

  • Mathematica
    q[k_] := Module[{d = Divisors[k+1], x}, CoefficientList[Product[1 + x^i, {i, d}], x][[1+k]] == 1]; Select[Range[2000], q] (* Amiram Eldar, Apr 16 2025 *)

Formula

A085491(a(n)) = 1.

Extensions

More terms from David W. Wilson, Feb 02 2006

A359196 a(n) is the number of subsets of the divisors of n which sum to n+1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 8, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 33, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 27, 1, 1, 1, 1, 1, 2, 1, 7, 1, 1, 1, 25, 1, 1, 1, 2, 1, 20, 1, 1, 1, 1, 1, 21, 1, 1, 1, 3
Offset: 1

Views

Author

Robert G. Wilson v, Dec 19 2022

Keywords

Comments

Inspired by an email from Alonso Del Arte, dated Dec 12 2022.
Only abundant numbers, A005101, have values exceeding one.
First term to have k subsets is n = A359197(k).
Question: Are the positions of records given by some subset of A002182? See also A065218, A340840. - Antti Karttunen, Jan 20 2025

Examples

			a(1) = 0; a(2) = 1 since the divisors of 2, {1, 2} sum to 3;
a(18) = 2 since the divisors of 18, {1, 2, 3, 6, 9, 18}, have two subsets, {1, 18}, {1, 3, 6, 9} which sum to 19;
a(12) = 3 since the divisors of 12, {1, 2, 3, 4, 6, 12}, have three subsets, {1, 12}, {3, 4, 6}, {1, 2, 4, 6} which sum to 13;
a(162) = 4 since its divisors are {1, 2, 3, 6, 9, 18, 27, 54, 81, 162}, have four subsets, {1, 162}, {1, 27, 54, 81}, {1, 9, 18, 54, 81}, {1, 3, 6, 18, 54, 81} which sum to 163;
a(24) = 5 since its divisors {1, 2, 3, 4, 6, 8, 12, 24} have five subsets {1, 24}, {1, 4, 8, 12}, {2, 3, 8, 12}, {3, 4, 6, 12}, {1, 2, 4, 6, 12} which sum to 25; etc.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{c = k =1, d = Most@ Divisors@ n}, lgth = Length@ d; If[lgth < 18, c = 1 + Count[Total /@ Subsets@ d, n +1], While[k < 1 + 2^(lgth - 18), c += Count[Total /@ Subsets[d, All, {1 + (k -1)*2^18, k*2^18}], n +1]; k++]]; c]; Array[a, 100] (* or *)
    a[n_] := Block[{d = Divisors@ n}, SeriesCoefficient[ Series[ Product[1 + x^d[[i]], {i, Length@ d}], {x, 0, n +1}], n +1]]; Array[a, 100]
  • PARI
    A359196(n) = if(!n, 0, if(sigma(n)<=n, 1, my(p=1); fordiv(n, d, p *= (1 + 'x^d)); polcoeff(p, 1+n))); \\ Antti Karttunen, Jan 20 2025
Showing 1-5 of 5 results.