cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A085498 Primes p having at least one partition into distinct divisors of p + 1.

Original entry on oeis.org

3, 5, 7, 11, 17, 19, 23, 29, 31, 41, 47, 53, 59, 71, 79, 83, 89, 103, 107, 127, 131, 139, 149, 167, 179, 191, 197, 199, 223, 227, 233, 239, 251, 263, 269, 271, 293, 307, 311, 347, 349, 359, 367, 379, 383, 389, 419, 431, 439, 449, 461, 463, 467, 479, 499, 503
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Crossrefs

Subsequence of A085493.

Programs

  • Mathematica
    seqQ[p_] := Module[{d = Most[Divisors[p+1]]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, p}], p] > 0]; Select[Range[500], PrimeQ[#] && seqQ[#] &] (* Amiram Eldar, Jan 13 2020 *)
    Select[Prime[Range[100]],MemberQ[Total/@Subsets[Divisors[#+1]],#]&] (* Harvey P. Dale, Oct 04 2020 *)

Formula

A085496(a(n)) > 0.

A085491 Number of ways to write n as sum of distinct divisors of n+1.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 5, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 5, 0, 0, 0, 3, 0, 2, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 31, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 26, 0, 0, 0, 0, 0, 1, 0, 6, 0, 0, 0, 23, 0, 0, 0, 1, 0, 20, 0, 0, 0, 0, 0, 21, 0, 0, 0, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Comments

a(A085492(n)) = 0; a(A085493(n)) > 0; a(A085494(n)) = 1.

Examples

			n=11, divisors of 12=11+1 that are not greater 11: {1,2,3,4,6}, 11=6+5=6+4+1, therefore a(11)=2.
		

Crossrefs

Cf. A085496.

Programs

  • Maple
    a:= proc(m) option remember; local b, l; b, l:=
          proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
            b(n, i-1)+`if`(l[i]>n, 0, b(n-l[i], i-1))))
          end, sort([numtheory[divisors](m+1)[]]);
          forget(b); b(m, nops(l)-1)
        end:
    seq(a(n), n=0..120);  # Alois P. Heinz, Mar 12 2019
  • Mathematica
    a[n_] := Module[{dd}, dd = Select[Divisors[n+1], # <= n&]; Select[ IntegerPartitions[n, dd // Length, dd], Reverse[#] == Union[#]&] // Length]; Array[a, 100, 0] (* Jean-François Alcover, Mar 12 2019 *)

Formula

a(n) = [x^n] Product_{d divides (n+1)} (1 + x^d). - Alois P. Heinz, Feb 04 2023

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 12 2019

A085497 Primes p having no partition into distinct divisors of p+1.

Original entry on oeis.org

2, 13, 37, 43, 61, 67, 73, 97, 101, 109, 113, 137, 151, 157, 163, 173, 181, 193, 211, 229, 241, 257, 277, 281, 283, 313, 317, 331, 337, 353, 373, 397, 401, 409, 421, 433, 443, 457, 487, 491, 523, 541, 547, 563, 577, 601, 613, 617, 631, 641, 653, 661, 673, 677
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Examples

			p=13, divisors of p+1=13+1=14 that are not greater 13: {1,2,7} with sums of distinct summands 1,2,3=2+1,7,8=7+1,9=7+2 and 10=7+2+1, therefore 13 is a term.
		

Crossrefs

Subsequence of A085492.

Programs

  • Mathematica
    seqQ[p_] := Module[{d = Most[Divisors[p+1]]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, p}], p] == 0]; Select[Range[700], PrimeQ[#] && seqQ[#] &] (* Amiram Eldar, Jan 13 2020 *)

Formula

A085496(a(n)) = 0.

Extensions

More terms from Amiram Eldar, Jan 13 2020

A085499 Primes p having exactly one partition into distinct divisors of p+1.

Original entry on oeis.org

3, 5, 7, 17, 19, 31, 53, 103, 127, 271, 367, 463, 499, 859, 967, 1013, 1483, 1951, 3229, 3533, 3769, 3833, 4373, 5477, 6101, 7069, 7457, 8191, 8501, 9041, 9521, 11527, 11621, 11777, 13121, 14551, 17791, 20071, 21943, 23167, 25471, 29311, 33619, 36979, 44491, 45667
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Crossrefs

Subsequence of A085498 and of A085494.
Cf. A085496.

Programs

  • Mathematica
    seqQ[p_] := Module[{d = Most[Divisors[p+1]]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, p}], p]  == 1]; Select[Range[1000], PrimeQ[#] && seqQ[#] &] (* Amiram Eldar, Jan 13 2020 *)

Formula

A085496(a(n)) = 1.

Extensions

a(14)-a(38) from Alois P. Heinz, Apr 30 2012
a(39)-a(46) from Amiram Eldar, Jan 13 2020
Showing 1-4 of 4 results.