cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A085498 Primes p having at least one partition into distinct divisors of p + 1.

Original entry on oeis.org

3, 5, 7, 11, 17, 19, 23, 29, 31, 41, 47, 53, 59, 71, 79, 83, 89, 103, 107, 127, 131, 139, 149, 167, 179, 191, 197, 199, 223, 227, 233, 239, 251, 263, 269, 271, 293, 307, 311, 347, 349, 359, 367, 379, 383, 389, 419, 431, 439, 449, 461, 463, 467, 479, 499, 503
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Crossrefs

Subsequence of A085493.

Programs

  • Mathematica
    seqQ[p_] := Module[{d = Most[Divisors[p+1]]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, p}], p] > 0]; Select[Range[500], PrimeQ[#] && seqQ[#] &] (* Amiram Eldar, Jan 13 2020 *)
    Select[Prime[Range[100]],MemberQ[Total/@Subsets[Divisors[#+1]],#]&] (* Harvey P. Dale, Oct 04 2020 *)

Formula

A085496(a(n)) > 0.

A085492 Numbers n having no partition into distinct divisors of n+1.

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 12, 13, 14, 16, 18, 20, 21, 22, 24, 25, 26, 28, 30, 32, 33, 34, 36, 37, 38, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 60, 61, 62, 64, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 80, 81, 82, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Comments

A085491(a(n)) = 0; complement of A085493;
A006093 is a subsequence (prime minus 1).

Crossrefs

Cf. A085497.

A320515 Squarefree k > 1 with sigma(sigma(k)) < 2*k + 1.

Original entry on oeis.org

2, 13, 37, 43, 61, 67, 73, 97, 109, 151, 157, 163, 181, 193, 211, 229, 241, 277, 283, 313, 331, 337, 373, 397, 409, 421, 433, 457, 487, 523, 541, 547, 577, 601, 613, 631, 661, 673, 691, 709, 733, 751, 757, 787, 823, 829, 853, 877, 883, 907, 937, 997
Offset: 1

Views

Author

Peter Luschny, Oct 14 2018

Keywords

Comments

Conjecturally a subsequence of A085497.
This conjecture is false, the first counterexample is a(113) = 2257 = 37 * 61 which is the least composite term in this sequence. - Amiram Eldar, Jun 17 2020

Crossrefs

Programs

  • Maple
    isA320515 := n -> (n > 1) and issqrfree(n) and (sigma(sigma(n)) < 2*n+1):
    select(isA320515, [$1..1000]);
  • Mathematica
    Rest[Select[Range[1000], SquareFreeQ[#] && DivisorSigma[1, DivisorSigma[1, #]] < 2*# + 1 &]] (* Vaclav Kotesovec, Oct 14 2018 *)
  • PARI
    isok(n) = (n>1) && issquarefree(n) && (sigma(sigma(n)) < 2*n + 1); \\ Michel Marcus, Oct 14 2018
Showing 1-3 of 3 results.