cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A085493 Numbers k having partitions into distinct divisors of k + 1.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 19, 23, 27, 29, 31, 35, 39, 41, 47, 53, 55, 59, 63, 65, 69, 71, 77, 79, 83, 87, 89, 95, 99, 103, 107, 111, 119, 125, 127, 131, 139, 143, 149, 155, 159, 161, 167, 175, 179, 191, 195, 197, 199, 203, 207, 209, 215, 219, 223, 227, 233, 239
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Comments

A085491(a(n)) > 0; complement of A085492.

Examples

			The divisors of 42 are 1, 2, 3, 6, 7, 14, 21, 42. Since 6 + 14 + 21 = 41, 41 is in the sequence.
The divisors of 43 are 1, 43. Since no selection of these divisors can possibly add up to 42, this means that 42 is not in the sequence.
		

Crossrefs

Programs

  • Maple
    q:= proc(m) option remember; local b, l; b, l:=
          proc(n, i) option remember; n=0 or i>=1 and
            (l[i]<=n and b(n-l[i], i-1) or b(n, i-1))
          end, sort([numtheory[divisors](m+1)[]]);
          b(m, nops(l)-1)
        end:
    select(q, [$1..300])[];  # Alois P. Heinz, Feb 04 2023
  • Mathematica
    divNextableQ[n_] := TrueQ[Length[Select[Subsets[Divisors[n + 1]], Plus@@# == n &]] > 0]; Select[Range[100], divNextableQ] (* Alonso del Arte, Jan 07 2023 *)
  • Scala
    def divisors(n: Int): IndexedSeq[Int] = (1 to n).filter(n % _ == 0)
    def divPartSums(n: Int): List[Int] = divisors(n).toSet.subsets.toList.map(_.sum)
    (1 to 128).filter(n => divPartSums(n + 1).contains(n)) // Alonso del Arte, Jan 26 2023

Formula

{k > 0 : 0 < [x^k] Product_{d divides (k+1)} (1+x^d)}. - Alois P. Heinz, Feb 04 2023

A085496 Number of ways to write prime(n) as sum of distinct divisors of prime(n)+1.

Original entry on oeis.org

0, 1, 1, 1, 2, 0, 1, 1, 5, 3, 1, 0, 2, 0, 10, 1, 31, 0, 0, 26, 0, 6, 23, 20, 0, 0, 1, 13, 0, 0, 1, 15, 0, 14, 9, 0, 0, 0, 190, 0, 713, 0, 42, 0, 7, 9, 0, 9, 6, 0, 6, 2148, 0, 509, 0, 120, 109, 1, 0, 0, 0, 4, 6, 100, 0, 0, 0, 0, 2, 4, 0, 21897, 1, 0, 3, 85, 79, 0, 0, 0, 19172, 0, 1130
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Comments

a(n) = A085491(A000040(n));
a(A085498(n)) > 0.

Examples

			n=5, divisors of A000040(5)+1=11+1=12 that are not greater 11: {1,2,3,4,6}, 11=6+4+1=6+3+2, therefore a(5)=2.
		

Programs

  • Maple
    b:= proc(n, i) option remember; global l;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+
          `if`(l[i]>n, 0, b(n-l[i], i-1))))
        end:
    a:= proc(n) global l; local p;
          forget(b);
          p:= ithprime(n);
          l:= sort([numtheory[divisors](p+1)[]]);
          b(p, nops(l)-1)
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, May 01 2012
  • Mathematica
    Count[Total/@Subsets[Most[Divisors[Prime[#]+1]]],Prime[#]]&/@Range[90] (* Harvey P. Dale, Jan 31 2016 *)

A085497 Primes p having no partition into distinct divisors of p+1.

Original entry on oeis.org

2, 13, 37, 43, 61, 67, 73, 97, 101, 109, 113, 137, 151, 157, 163, 173, 181, 193, 211, 229, 241, 257, 277, 281, 283, 313, 317, 331, 337, 353, 373, 397, 401, 409, 421, 433, 443, 457, 487, 491, 523, 541, 547, 563, 577, 601, 613, 617, 631, 641, 653, 661, 673, 677
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Examples

			p=13, divisors of p+1=13+1=14 that are not greater 13: {1,2,7} with sums of distinct summands 1,2,3=2+1,7,8=7+1,9=7+2 and 10=7+2+1, therefore 13 is a term.
		

Crossrefs

Subsequence of A085492.

Programs

  • Mathematica
    seqQ[p_] := Module[{d = Most[Divisors[p+1]]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, p}], p] == 0]; Select[Range[700], PrimeQ[#] && seqQ[#] &] (* Amiram Eldar, Jan 13 2020 *)

Formula

A085496(a(n)) = 0.

Extensions

More terms from Amiram Eldar, Jan 13 2020

A225223 Primes of the form p - 1, where p is a practical number (A005153).

Original entry on oeis.org

3, 5, 7, 11, 17, 19, 23, 29, 31, 41, 47, 53, 59, 71, 79, 83, 89, 103, 107, 127, 131, 139, 149, 167, 179, 191, 197, 199, 223, 227, 233, 239, 251, 263, 269, 271, 293, 307, 311, 347, 359, 367, 379, 383, 389, 419, 431, 439, 449, 461, 463, 467, 479, 499, 503, 509
Offset: 1

Views

Author

Frank M Jackson, May 02 2013

Keywords

Examples

			a(5)=17 as 18 is a practical number, 18-1=17 and it is the 5th such prime.
		

Crossrefs

Programs

  • Mathematica
    PracticalQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]];
    Select[Table[Prime[n]+1, {n, 1, 200}], PracticalQ]-1 (* using T. D. Noe's program A005153 *)
  • PARI
    isPractical(n)={
        if(n%2,return(n==1));
        my(f=factor(n),P=1);
        for(i=1,#f[,1]-1,
            P*=sigma(f[i,1]^f[i,2]);
            if(f[i+1,1]>P+1,return(0))
        );
        n>0
    };
    select(p->isPractical(p+1),primes(300)) \\ Charles R Greathouse IV, May 03 2013

A085499 Primes p having exactly one partition into distinct divisors of p+1.

Original entry on oeis.org

3, 5, 7, 17, 19, 31, 53, 103, 127, 271, 367, 463, 499, 859, 967, 1013, 1483, 1951, 3229, 3533, 3769, 3833, 4373, 5477, 6101, 7069, 7457, 8191, 8501, 9041, 9521, 11527, 11621, 11777, 13121, 14551, 17791, 20071, 21943, 23167, 25471, 29311, 33619, 36979, 44491, 45667
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Crossrefs

Subsequence of A085498 and of A085494.
Cf. A085496.

Programs

  • Mathematica
    seqQ[p_] := Module[{d = Most[Divisors[p+1]]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, p}], p]  == 1]; Select[Range[1000], PrimeQ[#] && seqQ[#] &] (* Amiram Eldar, Jan 13 2020 *)

Formula

A085496(a(n)) = 1.

Extensions

a(14)-a(38) from Alois P. Heinz, Apr 30 2012
a(39)-a(46) from Amiram Eldar, Jan 13 2020

A164319 Primes p such that the sum of divisors of p+1 is larger than 2*p.

Original entry on oeis.org

3, 5, 7, 11, 17, 19, 23, 29, 31, 41, 47, 53, 59, 71, 79, 83, 89, 101, 103, 107, 113, 127, 131, 137, 139, 149, 167, 173, 179, 191, 197, 199, 223, 227, 233, 239, 251, 257, 263, 269, 271, 281, 293, 307, 311, 317, 347, 349, 353, 359, 367, 379, 383, 389, 401, 419
Offset: 1

Views

Author

Keywords

Comments

For a subset of these, namely p=179, 239, 359, 419, etc, sigma(p+1) is even larger than 3*p.

Examples

			For p=3, the sum of divisors of p+1 is A000203(4)=7 > 2*3, so p=3 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Plus@@Divisors[n]; lst={};Do[p=Prime[n];If[f[p+1]>2*p,AppendTo[lst, p]],{n,6!}];lst
    Select[Prime[Range[100]], DivisorSigma[1, # + 1] > 2 # &] (* G. C. Greubel, Sep 13 2017 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (sigma(p+1) > 2*p, print1(p, ", "))); \\ Michel Marcus, Sep 13 2017

Extensions

Edited by R. J. Mathar, Aug 21 2009

A346794 Primes p such that the largest Dyck path of the symmetric representation of sigma(p) does not touch the largest Dyck path of the symmetric representation of sigma(p+1).

Original entry on oeis.org

3, 5, 7, 11, 17, 19, 23, 29, 31, 41, 47, 53, 59, 71, 79, 83, 89, 103, 107, 127, 131, 139, 149, 167, 179, 191, 197, 199, 223, 227, 233, 239, 251, 263, 269, 271, 293, 307, 311, 359, 367, 379, 383, 389, 419, 431, 439, 449, 461, 463, 467, 479, 499, 503, 509, 521
Offset: 1

Views

Author

Omar E. Pol, Aug 04 2021

Keywords

Comments

This property of a(n) is because the symmetric representation of sigma(a(n)+1) has only one part.
First differs from both A085498 and A225223 at a(40).

Crossrefs

Showing 1-7 of 7 results.