cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A106431 Even elements of A085493.

Original entry on oeis.org

944, 1574, 2204, 2834, 3464, 4094, 4724, 5354, 5774, 5984, 6434, 6614, 6824, 7244, 7424, 7874, 8084, 8414, 8504, 8924, 9134, 9554, 9764, 10394, 11024, 11654, 12284, 12704, 12914, 13544, 14174, 14804, 15014, 15434, 16064, 16694, 17324, 17954, 18584, 19214, 19304
Offset: 1

Views

Author

David W. Wilson, Feb 17 2006

Keywords

Crossrefs

A085498 Primes p having at least one partition into distinct divisors of p + 1.

Original entry on oeis.org

3, 5, 7, 11, 17, 19, 23, 29, 31, 41, 47, 53, 59, 71, 79, 83, 89, 103, 107, 127, 131, 139, 149, 167, 179, 191, 197, 199, 223, 227, 233, 239, 251, 263, 269, 271, 293, 307, 311, 347, 349, 359, 367, 379, 383, 389, 419, 431, 439, 449, 461, 463, 467, 479, 499, 503
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Crossrefs

Subsequence of A085493.

Programs

  • Mathematica
    seqQ[p_] := Module[{d = Most[Divisors[p+1]]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, p}], p] > 0]; Select[Range[500], PrimeQ[#] && seqQ[#] &] (* Amiram Eldar, Jan 13 2020 *)
    Select[Prime[Range[100]],MemberQ[Total/@Subsets[Divisors[#+1]],#]&] (* Harvey P. Dale, Oct 04 2020 *)

Formula

A085496(a(n)) > 0.

A085491 Number of ways to write n as sum of distinct divisors of n+1.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 5, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 5, 0, 0, 0, 3, 0, 2, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 31, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 26, 0, 0, 0, 0, 0, 1, 0, 6, 0, 0, 0, 23, 0, 0, 0, 1, 0, 20, 0, 0, 0, 0, 0, 21, 0, 0, 0, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Comments

a(A085492(n)) = 0; a(A085493(n)) > 0; a(A085494(n)) = 1.

Examples

			n=11, divisors of 12=11+1 that are not greater 11: {1,2,3,4,6}, 11=6+5=6+4+1, therefore a(11)=2.
		

Crossrefs

Cf. A085496.

Programs

  • Maple
    a:= proc(m) option remember; local b, l; b, l:=
          proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
            b(n, i-1)+`if`(l[i]>n, 0, b(n-l[i], i-1))))
          end, sort([numtheory[divisors](m+1)[]]);
          forget(b); b(m, nops(l)-1)
        end:
    seq(a(n), n=0..120);  # Alois P. Heinz, Mar 12 2019
  • Mathematica
    a[n_] := Module[{dd}, dd = Select[Divisors[n+1], # <= n&]; Select[ IntegerPartitions[n, dd // Length, dd], Reverse[#] == Union[#]&] // Length]; Array[a, 100, 0] (* Jean-François Alcover, Mar 12 2019 *)

Formula

a(n) = [x^n] Product_{d divides (n+1)} (1 + x^d). - Alois P. Heinz, Feb 04 2023

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 12 2019

A085492 Numbers n having no partition into distinct divisors of n+1.

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 12, 13, 14, 16, 18, 20, 21, 22, 24, 25, 26, 28, 30, 32, 33, 34, 36, 37, 38, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 60, 61, 62, 64, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 80, 81, 82, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Comments

A085491(a(n)) = 0; complement of A085493;
A006093 is a subsequence (prime minus 1).

Crossrefs

Cf. A085497.

A085494 Numbers k having exactly one partition into distinct divisors of k+1.

Original entry on oeis.org

1, 3, 5, 7, 15, 17, 19, 27, 31, 53, 63, 65, 69, 77, 87, 99, 103, 127, 161, 195, 255, 271, 303, 367, 413, 463, 485, 495, 499, 511, 579, 649, 725, 819, 859, 867, 967, 1013, 1023, 1035, 1147, 1183, 1311, 1315, 1351, 1371, 1375, 1457, 1483, 1503, 1695, 1887, 1951
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Comments

Includes every 2^k-1 and is therefore infinite. - David W. Wilson, Feb 02 2006

Crossrefs

Subsequence of A085493.

Programs

  • Mathematica
    q[k_] := Module[{d = Divisors[k+1], x}, CoefficientList[Product[1 + x^i, {i, d}], x][[1+k]] == 1]; Select[Range[2000], q] (* Amiram Eldar, Apr 16 2025 *)

Formula

A085491(a(n)) = 1.

Extensions

More terms from David W. Wilson, Feb 02 2006

A343621 Numbers k such that the largest Dyck path of the symmetric representation of sigma(k) does not touch the largest Dyck path of the symmetric representation of sigma(k+1).

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 19, 23, 27, 29, 31, 35, 39, 41, 47, 53, 55, 59, 63, 65, 71, 79, 83, 87, 89, 95, 99, 103, 107, 111, 119, 125, 127, 131, 139, 143, 149, 155, 159, 161, 167, 175, 179, 191, 195, 197, 199, 203, 207, 209, 215, 219, 223, 227, 233, 239, 251, 255
Offset: 1

Views

Author

Omar E. Pol, Aug 04 2021

Keywords

Comments

This property of a(n) is because the symmetric representation of sigma(a(n)+1) has only one part.
All terms are odd.
First differs from A085493 at a(22).

Crossrefs

Programs

  • Mathematica
    (* Functions a174973Q[ ] is defined in A279029 *)
    a343621[n_] := Select[Range[n], a174973Q[#+1]&]
    a343621[255] (* Hartmut F. W. Hoft, Feb 20 2025 *)

Formula

a(n) = A174973(n+1) - 1.
Showing 1-6 of 6 results.