cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A085493 Numbers k having partitions into distinct divisors of k + 1.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 19, 23, 27, 29, 31, 35, 39, 41, 47, 53, 55, 59, 63, 65, 69, 71, 77, 79, 83, 87, 89, 95, 99, 103, 107, 111, 119, 125, 127, 131, 139, 143, 149, 155, 159, 161, 167, 175, 179, 191, 195, 197, 199, 203, 207, 209, 215, 219, 223, 227, 233, 239
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Comments

A085491(a(n)) > 0; complement of A085492.

Examples

			The divisors of 42 are 1, 2, 3, 6, 7, 14, 21, 42. Since 6 + 14 + 21 = 41, 41 is in the sequence.
The divisors of 43 are 1, 43. Since no selection of these divisors can possibly add up to 42, this means that 42 is not in the sequence.
		

Crossrefs

Programs

  • Maple
    q:= proc(m) option remember; local b, l; b, l:=
          proc(n, i) option remember; n=0 or i>=1 and
            (l[i]<=n and b(n-l[i], i-1) or b(n, i-1))
          end, sort([numtheory[divisors](m+1)[]]);
          b(m, nops(l)-1)
        end:
    select(q, [$1..300])[];  # Alois P. Heinz, Feb 04 2023
  • Mathematica
    divNextableQ[n_] := TrueQ[Length[Select[Subsets[Divisors[n + 1]], Plus@@# == n &]] > 0]; Select[Range[100], divNextableQ] (* Alonso del Arte, Jan 07 2023 *)
  • Scala
    def divisors(n: Int): IndexedSeq[Int] = (1 to n).filter(n % _ == 0)
    def divPartSums(n: Int): List[Int] = divisors(n).toSet.subsets.toList.map(_.sum)
    (1 to 128).filter(n => divPartSums(n + 1).contains(n)) // Alonso del Arte, Jan 26 2023

Formula

{k > 0 : 0 < [x^k] Product_{d divides (k+1)} (1+x^d)}. - Alois P. Heinz, Feb 04 2023

A085491 Number of ways to write n as sum of distinct divisors of n+1.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 5, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 5, 0, 0, 0, 3, 0, 2, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 31, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 26, 0, 0, 0, 0, 0, 1, 0, 6, 0, 0, 0, 23, 0, 0, 0, 1, 0, 20, 0, 0, 0, 0, 0, 21, 0, 0, 0, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Comments

a(A085492(n)) = 0; a(A085493(n)) > 0; a(A085494(n)) = 1.

Examples

			n=11, divisors of 12=11+1 that are not greater 11: {1,2,3,4,6}, 11=6+5=6+4+1, therefore a(11)=2.
		

Crossrefs

Cf. A085496.

Programs

  • Maple
    a:= proc(m) option remember; local b, l; b, l:=
          proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
            b(n, i-1)+`if`(l[i]>n, 0, b(n-l[i], i-1))))
          end, sort([numtheory[divisors](m+1)[]]);
          forget(b); b(m, nops(l)-1)
        end:
    seq(a(n), n=0..120);  # Alois P. Heinz, Mar 12 2019
  • Mathematica
    a[n_] := Module[{dd}, dd = Select[Divisors[n+1], # <= n&]; Select[ IntegerPartitions[n, dd // Length, dd], Reverse[#] == Union[#]&] // Length]; Array[a, 100, 0] (* Jean-François Alcover, Mar 12 2019 *)

Formula

a(n) = [x^n] Product_{d divides (n+1)} (1 + x^d). - Alois P. Heinz, Feb 04 2023

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 12 2019

A085497 Primes p having no partition into distinct divisors of p+1.

Original entry on oeis.org

2, 13, 37, 43, 61, 67, 73, 97, 101, 109, 113, 137, 151, 157, 163, 173, 181, 193, 211, 229, 241, 257, 277, 281, 283, 313, 317, 331, 337, 353, 373, 397, 401, 409, 421, 433, 443, 457, 487, 491, 523, 541, 547, 563, 577, 601, 613, 617, 631, 641, 653, 661, 673, 677
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2003

Keywords

Examples

			p=13, divisors of p+1=13+1=14 that are not greater 13: {1,2,7} with sums of distinct summands 1,2,3=2+1,7,8=7+1,9=7+2 and 10=7+2+1, therefore 13 is a term.
		

Crossrefs

Subsequence of A085492.

Programs

  • Mathematica
    seqQ[p_] := Module[{d = Most[Divisors[p+1]]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, p}], p] == 0]; Select[Range[700], PrimeQ[#] && seqQ[#] &] (* Amiram Eldar, Jan 13 2020 *)

Formula

A085496(a(n)) = 0.

Extensions

More terms from Amiram Eldar, Jan 13 2020
Showing 1-3 of 3 results.