cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085507 Stirling transform of the prime characteristic function.

Original entry on oeis.org

0, 0, 1, 4, 13, 41, 136, 505, 2171, 10693, 58246, 340242, 2095435, 13492077, 90267633, 623383765, 4414350135, 31899350954, 235002008725, 1773013299342, 13855253098226, 114135759054965, 1010686200326760, 9744658443894282, 102153128291263124, 1147158516520205256
Offset: 0

Views

Author

Eric W. Weisstein, Jul 02 2003

Keywords

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, `if`(isprime(m), 1, 0), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 06 2021
  • Mathematica
    a[n_] := Sum[ StirlingS2[n, k]*Boole[PrimeQ[k]], {k, 0, n}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 29 2012 *)

Formula

G.f.: Sum_{k>=1} x^prime(k)/Product_{j=1..prime(k)} (1 - j*x). - Ilya Gutkovskiy, Jun 19 2018