A085507 Stirling transform of the prime characteristic function.
0, 0, 1, 4, 13, 41, 136, 505, 2171, 10693, 58246, 340242, 2095435, 13492077, 90267633, 623383765, 4414350135, 31899350954, 235002008725, 1773013299342, 13855253098226, 114135759054965, 1010686200326760, 9744658443894282, 102153128291263124, 1147158516520205256
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
- S. K. Ghosal, J. K. Mandal, Stirling Transform Based Color Image Authentication, Procedia Technology, 2013 Volume 10, 2013, Pages 95-104.
- Eric Weisstein's World of Mathematics, Stirling Transform
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, `if`(isprime(m), 1, 0), m*b(n-1, m)+b(n-1, m+1)) end: a:= n-> b(n, 0): seq(a(n), n=0..25); # Alois P. Heinz, Aug 06 2021
-
Mathematica
a[n_] := Sum[ StirlingS2[n, k]*Boole[PrimeQ[k]], {k, 0, n}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 29 2012 *)
Formula
G.f.: Sum_{k>=1} x^prime(k)/Product_{j=1..prime(k)} (1 - j*x). - Ilya Gutkovskiy, Jun 19 2018