cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A085529 a(n) = (2n+1)^(2n+1).

Original entry on oeis.org

1, 27, 3125, 823543, 387420489, 285311670611, 302875106592253, 437893890380859375, 827240261886336764177, 1978419655660313589123979, 5842587018385982521381124421, 20880467999847912034355032910567, 88817841970012523233890533447265625, 443426488243037769948249630619149892803
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2003

Keywords

Comments

a(n) == 2*n + 1 (mod 24). - Mathew Englander, Aug 16 2020

Crossrefs

Programs

Formula

From Mathew Englander, Aug 16 2020: (Start)
a(n) = A000312(2*n + 1).
a(n) = A016754(n)^n * (2*n + 1).
a(n) = A085527(n)^2 * (2*n + 1).
a(n) = A085528(n)^2 / (2*n + 1).
a(n) = A085530(n) * A005408(n).
a(n) = A085531(n) * A016754(n).
a(n) = A085532(n)^2 - A215265(2*n + 1).
a(n) = A085533(n) + A045531(2*n + 1).
a(n) = A085534(n+1) - A007781(2*n + 1).
a(n) = A085535(n+1) - A055869(2*n + 1).
(End)
Sum_{n>=0} 1/a(n) = (A073009 + A083648)/2 = 1.0373582538... . - Amiram Eldar, May 17 2022

A347281 a(n) = 2^(n - 1)*permanent(M_n)^2 where M_n is the n X n matrix M_n(j, k) = cos(Pi*j*k/n).

Original entry on oeis.org

1, 2, 4, 0, 36, 288, 144, 18432, 11664, 115200, 144400, 0, 808151184, 133693952, 262440000, 299649466368, 7937314520976, 73575242956800, 21204146201616, 6459752448000000, 212406372892224, 8753824001424826368, 195844025123172289600, 152252829159294763008, 26487254903393025000000
Offset: 1

Views

Author

Hugo Pfoertner, Sep 18 2021

Keywords

Examples

			a(7) = -3384288*cos(Pi/7) - 3460896*sin(Pi/14) - 45888*cos(2*Pi/7) - 28224*cos(15*Pi/7) + 48384*cos(17*Pi/7) + 1706400 + 3458400*sin(3*Pi/14) = 144. - _Chai Wah Wu_, Sep 19 2021
		

Crossrefs

Programs

  • PARI
    P(n)=matpermanent(matrix(n,n,j,k,cos((Pi*j*k)/n)));
    for(k=1,25,print1(round(2^(k-1)*P(k)^2),", "))

A371153 a(n) is the permanent of the 2n+1 X 2n+1 matrix P(2n+1) defined by P[1,j] = 1, P[i,j] = i-1 if i<=j, and P[i,i] = i-n-1 otherwise with 1 <= i,j <= 2n+1.

Original entry on oeis.org

1, -3, 185, -55307, 49980969, -106782742099, 462446644072153, -3649813053096346875, 48540310969531346254217, -1024268653171975469599364291, 32694499032613728282606987622521, -1518591968826504411972243578217645163, 99392870823564324693001427592486103515625
Offset: 0

Views

Author

Stefano Spezia, Mar 13 2024

Keywords

Comments

The matrices P(2n) have permanent equal to zero.

Examples

			a(3) = -55307:
   1,  1,  1,  1,  1,  1, 1;
  -6,  1,  1,  1,  1,  1, 1;
  -5, -5,  2,  2,  2,  2, 2;
  -4, -4, -4,  3,  3,  3, 3;
  -3, -3, -3, -3,  4,  4, 4;
  -2, -2, -2, -2, -2,  5, 5;
  -1, -1, -1, -1, -1, -1, 6.
		

Crossrefs

Cf. A000169, A005408, A084849 (trace), A085530 (determinant).

Programs

  • Mathematica
    b[n_]:=Permanent[Table[If[i==1, 1, If[i<=j, i-1, i-n-1]], {i, n}, {j, n}]]; a[n_]:=b[2n+1]; Array[a, 10,0]
Showing 1-3 of 3 results.