A085541 Decimal expansion of the prime zeta function at 3.
1, 7, 4, 7, 6, 2, 6, 3, 9, 2, 9, 9, 4, 4, 3, 5, 3, 6, 4, 2, 3, 1, 1, 3, 3, 1, 4, 6, 6, 5, 7, 0, 6, 7, 0, 0, 9, 7, 5, 4, 1, 2, 1, 2, 1, 9, 2, 6, 1, 4, 9, 2, 8, 9, 8, 8, 8, 6, 7, 2, 0, 1, 6, 7, 0, 1, 6, 3, 1, 5, 8, 9, 5, 2, 8, 1, 2, 9, 5, 8, 7, 6, 3, 5, 6, 3, 4, 2, 0, 0, 5, 3, 6, 9, 7, 2, 5, 6, 0, 5, 4, 6, 7, 9, 1
Offset: 0
Examples
0.1747626392994435364231...
References
- Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
- J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891.
Links
- Jason Kimberley, Table of n, a(n) for n = 0..1497
- Henri Cohen, High Precision Computation of Hardy-Littlewood Constants, Preprint, 1998.
- Henri Cohen, High-precision computation of Hardy-Littlewood constants. [pdf copy, with permission]
- X. Gourdon and P. Sebah, Some Constants from Number theory
- R. J. Mathar, Series of reciprocal powers of k-almost primes, arXiv:0803.0900 [math.NT], 2008-2009. Table 1.
- Gerhard Niklasch and Pieter Moree, Some number-theoretical constants [Cached copy]
- Eric Weisstein's World of Mathematics, Prime Zeta Function
- Index to constants which are prime zeta sums {3,0,0}
Crossrefs
Programs
-
Magma
R := RealField(106); PrimeZeta := func
; Reverse(IntegerToSequence(Floor(PrimeZeta(3,117)*10^105))); // Jason Kimberley, Dec 30 2016 -
Mathematica
(* If Mathematica version >= 7.0 then RealDigits[PrimeZetaP[3]//N[#,105]&][[1]] else : *) m = 200; $MaxExtraPrecision = 200; PrimeZetaP[s_] := NSum[MoebiusMu[k]*Log[Zeta[k*s]]/k, {k, 1, m}, AccuracyGoal -> m, NSumTerms -> m, PrecisionGoal -> m, WorkingPrecision -> m]; RealDigits[PrimeZetaP[3]][[1]][[1 ;; 105]] (* Jean-François Alcover, Jun 24 2011 *)
-
PARI
recip3(n) = { v=0; p=1; forprime(y=2,n, v=v+1./y^3; ); print(v) }
-
PARI
sumeulerrat(1/p,3) \\ Hugo Pfoertner, Feb 03 2020
Formula
P(3) = Sum_{p prime} 1/p^3 = Sum_{n>=1} mobius(n)*log(zeta(3*n))/n. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Equals Sum_{k>=1} 1/A030078(k). - Amiram Eldar, Jul 27 2020
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Comments