A085635 Compute S, the number of different quadratic residues modulo B for every base B. If the density S/B is smaller for B than for every B' less than B, then B is added to the sequence.
1, 3, 4, 8, 12, 16, 32, 48, 80, 96, 112, 144, 240, 288, 336, 480, 560, 576, 720, 1008, 1440, 1680, 2016, 2640, 2880, 3600, 4032, 5040, 7920, 9360, 10080, 15840, 18480, 20160, 25200, 31680, 37440, 39600, 44352, 50400, 55440, 65520, 85680, 95760
Offset: 1
Keywords
Examples
a(3)=4 because for B=4 the different quadratic residues are {0,1}, so S=2, the density is D_4=50%, which is smaller than D_2=100% and D_3=66.67%.
Links
- Keith F. Lynch, Table of n, a(n) for n = 1..200 (terms 1..111 from Hugo Pfoertner)
- Andreas Enge, William Hart, Fredrik Johansson, Short addition sequences for theta functions, arXiv:1608.06810 [math.NT], 2016-2018.
Programs
-
Mathematica
Block[{s = Range[0, 2^14 + 1]^2, t}, t = Array[#/Length@ Union@ Mod[Take[s, # + 1], #] &, Length@ s - 1]; Map[FirstPosition[t, #][[1]] &, Union@ FoldList[Max, t]]] (* Michael De Vlieger, Sep 10 2018 *)
-
PARI
r=-1;for(n=1,1e6,t=1-sum(k=1,n,issquare(Mod(k,n)))/n;if(t>r,r=t;print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011
-
PARI
sq1(m)=sum(n=0,m-1,issquare(Mod(n,m))) sq(n,f=factor(n))=prod(i=1,#f~,my(p=f[i,1],e=f[i,2]); if(e>1,sq1(p^e),p\2+1)) r=2;for(n=1,1e6, t=sq(n)/n; if(t
Charles R Greathouse IV, Mar 30 2018
Extensions
More terms from Jud McCranie, Jul 12 2003
a(1) and PARI programs corrected by Hugo Pfoertner, Aug 23 2018
Comments