cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A084848 a(n) is the number of quadratic residues of A085635(n).

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 7, 8, 12, 14, 16, 16, 24, 28, 32, 42, 48, 48, 48, 64, 84, 96, 112, 144, 144, 176, 192, 192, 288, 336, 336, 504, 576, 576, 704, 864, 1008, 1056, 1152, 1232, 1152, 1344, 1728, 1920, 2016, 2016, 2352
Offset: 1

Views

Author

Jose R. Brox (tautocrona(AT)terra.es), Jul 12 2003

Keywords

Comments

Note that the terms are not all distinct.

Examples

			a(2)=2 because there are 2 different quadratic residues modulo 3, so 3 has 66.67% of quadratic residues density, while 2 has a 100%, so 3 has the least quadratic residues density up to 3.
		

Crossrefs

Programs

  • Mathematica
    Block[{s = Range[0, 2^15 + 1]^2, t}, t = Array[{#1/#2, #2} & @@ {#, Length@ Union@ Mod[Take[s, # + 1], #]} &, Length@ s - 1]; Map[t[[All, -1]][[FirstPosition[t[[All, 1]], #][[1]] ]] &, Union@ FoldList[Max, t[[All, 1]] ] ] ] (* Michael De Vlieger, Sep 10 2018 *)
  • PARI
    a000224(n)=my(f=factor(n));prod(i=1,#f[,1],if(f[i,1]==2,2^f[1,2]\6+2,f[i,1]^(f[i,2]+1)\(2*f[i,1]+2)+1)) \\ from Charles R Greathouse IV
    r=2;for(k=1,1e6,v=a000224(k);t=v/k;if(tHugo Pfoertner, Aug 24 2018

Formula

a(n) = A000224(A085635(n)). - Hugo Pfoertner, Aug 24 2018

Extensions

More terms from Jud McCranie, Jul 18 2003
a(1) corrected by Hugo Pfoertner, Aug 23 2018

A290727 Analog of A085635, replacing "quadratic residue" (X^2) with "value of X^2+X".

Original entry on oeis.org

1, 2, 6, 10, 14, 18, 30, 42, 66, 70, 90, 126, 198, 210, 330, 390, 450, 630, 990, 1170, 1386, 1638, 2142, 2310, 2730, 3150, 4950, 5850, 6930, 8190, 10710, 11970, 12870, 16830, 18018, 23562, 26334, 27846, 30030, 34650
Offset: 1

Views

Author

N. J. A. Sloane, Aug 10 2017

Keywords

Comments

Positions where R(k) = A290731(k)/k achieves a new minimum, i.e., R(k) < R(j), j = 0..k-1, R(0) = 2.

Crossrefs

Programs

  • Mathematica
    a290731[n_] := Product[{p, e} = pe; If[p == 2, 2^(e-1), 1+Quotient[p^(e+1), (2p+2)]], {pe, FactorInteger[n]}];
    Reap[For[r = 2; k = 1, k <= 35000, k++, t = a290731[k]/k; If[tJean-François Alcover, Sep 03 2018, from PARI *)
  • PARI
    a290731(n)={my(f=factor(n));prod(i=1,#f~,my([p,e]=f[i,]);if(p==2,2^(e-1),1+p^(e+1)\(2*p+2)))} \\ from Andrew Howroyd
    r=2;for(k=1,40000,t=a290731(k)/k;if(tHugo Pfoertner, Aug 23 2018

Extensions

More terms from Hugo Pfoertner, Aug 22 2018
Initial term added by Hugo Pfoertner, Aug 23 2018

A290729 Analog of A085635, replacing "quadratic residue" (X^2) with "value of X(3X-1)/2".

Original entry on oeis.org

1, 5, 7, 11, 13, 17, 19, 23, 25, 35, 55, 65, 77, 91, 119, 133, 143, 175, 275, 325, 385, 455, 595, 665, 715, 935, 1001, 1309, 1463, 1547, 1729, 1925, 2275, 2975, 3325, 3575, 4675, 5005, 6545, 7315, 7735, 8645
Offset: 1

Views

Author

N. J. A. Sloane, Aug 10 2017

Keywords

Comments

Positions k where R(k) = A290732(k)/k, achieves a new minimum.

Crossrefs

Programs

  • Mathematica
    a[n_] := Product[{p, e} = pe; If[p <= 3, p^e, (p^e - p^(e-1))/2 + (p^(e-1) - p^(Mod[e+1, 2]))/(2*(p+1)) + 1], {pe, FactorInteger[n]}];
    r = 2; Reap[For[j=1, j <= 10^4, j = j+1, t = a[j]/j; If[tJean-François Alcover, Oct 02 2018, after Hugo Pfoertner *)
  • PARI
    a290732(n)={my(f=factor(n));prod(k=1,#f~,my([p,e]=f[k,]);if(p<=3,p^e,(p^e-p^(e-1))/2+(p^(e-1)-p^((e+1)%2))/(2*(p+1))+1))}
    my(r=2);for(j=1,10001,my(t=a290732(j)/j);if(tHugo Pfoertner, Aug 26 2018

Extensions

a(1) corrected by Hugo Pfoertner, Aug 26 2018

A290728 Analog of A084848, replacing "quadratic residue" (X^2) with "value of X^2+X".

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 6, 8, 12, 12, 12, 16, 24, 24, 36, 42, 44, 48, 72, 84, 96, 112, 144, 144, 168, 176, 264, 308, 288, 336, 432, 480, 504, 648, 672, 864, 960, 1008, 1008, 1056, 1232, 1584, 1760, 1848, 2376, 2016, 2592
Offset: 1

Views

Author

N. J. A. Sloane, Aug 10 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a290731[n_] := Product[{p, e} = pe; If[p==2, 2^(e-1), 1 + Quotient[p^(e+1), (2p + 2)]], {pe, FactorInteger[n]}];
    Reap[For[r = 2; k = 1, k <= 200000, k++, v = a290731[k]; t = v/k; If[t < r, r = t; Sow[v]]]][[2, 1]] (* Jean-François Alcover, Sep 13 2018, from PARI *)
  • PARI
    a290731(n)={my(f=factor(n));prod(i=1,#f~,my([p,e]=f[i,]);if(p==2,2^(e-1),1+p^(e+1)\(2*p+2)))} \\ from Andrew Howroyd
    r=2;for(k=1,200000,v=a290731(k);t=v/k;if(tHugo Pfoertner, Aug 23 2018

Formula

a(n) = A290731(A290727(n)) - Hugo Pfoertner, Aug 23 2018

Extensions

More terms from Hugo Pfoertner, Aug 22 2018
Initial term added by Hugo Pfoertner, Aug 23 2018

A290730 Analog of A084848, replacing "quadratic residue" (X^2) with "value of X(3X-1)/2". a(n) = A290732(A290729(n)).

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 10, 12, 11, 12, 18, 21, 24, 28, 36, 40, 42, 44, 66, 77, 72, 84, 108, 120, 126, 162, 168, 216, 240, 252, 280, 264, 308, 396, 440, 462, 594, 504, 648, 720, 756, 840, 1008, 1080, 1134, 1260, 1512, 1512, 1680, 2016
Offset: 1

Views

Author

N. J. A. Sloane, Aug 10 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a290732[n_] := Product[{p, e} = pe; If[p <= 3, p^e, (p^e - p^(e-1))/2 + (p^(e-1) - p^(Mod[e+1, 2]))/(2*(p+1))+1], {pe, FactorInteger[n]}];
    r = 2; Reap[For[j = 1, j <= 24001, j = j+1, w = a290732[j]; t = w/j; If[t < r, r = t; Sow[w]]]][[2, 1]] (* Jean-François Alcover, Oct 03 2018, after Hugo Pfoertner *)
  • PARI
    a290732(n)={my(f=factor(n));prod(k=1,#f~,my([p,e]=f[k, ]); if(p<=3,p^e,(p^e-p^(e-1))/2+(p^(e-1)-p^((e+1)%2))/(2*(p+1))+1))}
    my(r=2);for(j=1,24001,my(w=a290732(j),t=w/j);if(tHugo Pfoertner, Aug 26 2018

Extensions

More terms from Hugo Pfoertner, Aug 23 2018
a(1), a(19) and a(38) corrected by Hugo Pfoertner, Aug 26 2018

A359195 Positive integers k with a smaller fraction of powers (mod k) than any smaller positive integers.

Original entry on oeis.org

1, 4, 16, 32, 36, 72, 144, 288, 432, 864, 1728, 3456, 3600, 5400, 7200, 10800, 21600, 43200, 86400, 151200, 172800, 216000, 302400
Offset: 1

Views

Author

Keywords

Comments

It seems that a(n) <= 2*a(n-1) for n > 3.
Conjecture: terms are products of primorials (A025487). A proof would greatly speed the search for more terms. On this conjecture, the next terms are 352800, 529200, 1058400, 2116800, 4233600, 6350400, 10584000, 19051200, 21168000, 31752000, 63504000, ....

Examples

			2 is not a square or a cube mod 4, while 0, 1, and 3 are all cubes mod 4. 1/4 is a record, so 4 is in the sequence.
None of 2, 4, 6, 10, 12, 14 are cubes mod 16 and of those only 4 is a square and none are 5th powers, for a 5/16 fraction, which is a record, so 16 is in the sequence.
		

Crossrefs

A085635 is the analogous sequence for squares.
Showing 1-6 of 6 results.