cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085688 a(1) = 11; a(n) = if n == 2 mod 3 then a(n-1)-3, if n == 0 mod 3 then a(n-1)-2, if n == 1 mod 3 then a(n-1)*2.

Original entry on oeis.org

11, 8, 6, 12, 9, 7, 14, 11, 9, 18, 15, 13, 26, 23, 21, 42, 39, 37, 74, 71, 69, 138, 135, 133, 266, 263, 261, 522, 519, 517, 1034, 1031, 1029, 2058, 2055, 2053, 4106, 4103, 4101, 8202, 8199, 8197, 16394, 16391, 16389, 32778, 32775, 32773, 65546, 65543, 65541, 131082
Offset: 1

Views

Author

N. J. A. Sloane, Jul 18 2003

Keywords

Comments

Sequence (in reversed order) was given as a puzzle: find the next term after 18, 9, 11, 14, 7, 9, 12! Thanks to Farideh Firoozbakht and Zak Seidov for the solution.

Programs

  • Maple
    a := proc(n) option remember; if n=1 then 11 elif n mod 3 = 2 then a(n-1)-3 elif n mod 3 = 0 then a(n-1)-2 else a(n-1)*2; fi; end;
  • Mathematica
    a[1] = 11; a[n_] := (3 - (-1)^Mod[n, 3])/2*a[n - 1] - (1 + (-1)^Mod[n, 3])/2* Floor[Mod[n, 3]/2] - (-1)^Mod[n, 3] - 1 (* Farideh Firoozbakht, Jul 23 2003 *)
    nxt[{n_,a_}]:=Module[{c=Mod[n+1,3]},{n+1,Which[c==2,a-3,c==0,a-2,c==1, 2a]}]; NestList[nxt,{1,11},60][[All,2]] (* or *) LinearRecurrence[ {0,0,3,0,0,-2},{11,8,6,12,9,7},70] (* Harvey P. Dale, Mar 14 2020 *)

Formula

a(1)=11; for k=>1, a(3k-1) = 7+2^(3k-1), a(3k) = 5+2^(3k-1), a(3k+1) = 10+2^(3k). - Zak Seidov, Jul 24 2003
a(n) = 2^floor((n-1)/3) + floor(21/(((n-1) mod 3)+2)). - Dean Hickerson, Jul 24 2003
G.f.: -x*(-11-8*x-6*x^2+21*x^3+15*x^4+11*x^5) / ( (x-1)*(2*x^3-1)*(1+x+x^2) ). - R. J. Mathar, Oct 20 2013