cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085696 a(n) = L(n) * L(n+1) * L(n+2) / 2, where L(n) = Lucas number (A000032).

Original entry on oeis.org

3, 6, 42, 154, 693, 2871, 12267, 51794, 219678, 930126, 3940797, 16692319, 70711683, 299536446, 1268861682, 5374976354, 22768778133, 96450071031, 408569091147, 1730726388874, 7331474722278, 31056625155606, 131557975542717, 557288527006079, 2360712084085443
Offset: 0

Views

Author

Emanuele Munarini, Jul 18 2003

Keywords

Examples

			G.f. = 3 + 6*x + 42*x^2 + 154*x^3 + 693*x^4 + 2871*x^5 + 12267*x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    Array[(Times @@ Map[LucasL, # + {0, 1, 2}])/2 &, 25, 0] (* Michael De Vlieger, Mar 19 2021 *)
    Times@@#/2&/@Partition[LucasL[Range[0,30]],3,1] (* Harvey P. Dale, Jun 07 2022 *)
  • PARI
    {a(n) = my(s); n++; s=if(n<0, -1, 1); n=abs(n); s^n * polcoeff( (-1 + 6*x +3*x^2 + 3*x^3) / ((1 + x - x^2) * (1 - 4*x - x^2)) + x * O(x^n), n)}; /* Michael Somos, Sep 17 2014 */

Formula

G.f.: ( 3 - 3 x + 6 x^2 + x^3 )/( 1 - 3 x - 6 x^2 + 3 x^3 + x^4 ).
Recurrence: a(n+4) = 3 a(n+3) + 6 a(n+2) - 3 a(n+1) - a(n).
From Michael Somos, Sep 17 2014: (Start)
a(n) = (6*F(n+1)^3 + 11*F(n+1)^2*F(n) - 3*F(n+1)*F(n)^2 - 2*F(n)^3) / 2 for all n in Z, where F(n) = Fibonacci number (A000045).
a(n) = (2*F(n+1) - F(n)) * (3*F(n+1) + F(n)) * (F(n+1) + 2*F(n)) / 2 for all n in Z.
a(-2-n) = -(-1)^n * a(n) for all n in Z.
0 = a(n)*(-a(n+1) - a(n+2)) + a(n+1)*(-3*a(n+1) + a(n+2)) for all n in Z. (End)
a(n) = -1 + Sum_{k=0..n} L(k)^2 * L(k+1). - Amiram Eldar, Jan 13 2022