A085713 Consider numbers k such that phi(x) = k has exactly 3 solutions and they are (3*p, 4*p, 6*p) where p is 1 or a prime. Sequence gives values of p.
1, 23, 29, 47, 53, 59, 71, 83, 103, 107, 131, 149, 167, 173, 179, 191, 197, 223, 227, 239, 263, 269, 283, 293, 311, 317, 347, 359, 373, 383, 389, 419, 431, 443, 467, 479, 491, 503, 509, 557, 563, 569, 587, 599, 643, 647, 653, 659, 677, 683, 709, 719
Offset: 1
Keywords
Examples
83 is a term because the three solutions (249,332,498) to phi(x) = 164 can be written as (3*83, 4*83, 6*83).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..500 from Reinhard Zumkeller)
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
- K. B. Stolarski and S. Greenbaum, A Ratio Associated with phi(x) = n, The Fibonacci Quarterly, Volume 23, Number 3, August 1985, pp. 265-269.
Programs
-
Haskell
import Data.List.Ordered (insertBag) import Data.List (groupBy); import Data.Function (on) a085713 n = a085713_list !! (n-1) a085713_list = 1 : r yx3ss where r (ps:pss) | a010051' cd == 1 && map (flip div cd) ps == [3, 4, 6] = cd : r pss | otherwise = r pss where cd = foldl1 gcd ps yx3ss = filter ((== 3) . length) $ map (map snd) $ groupBy ((==) `on` fst) $ f [1..] a002110_list [] where f is'@(i:is) ps'@(p:ps) yxs | i < p = f is ps' $ insertBag (a000010' i, i) yxs | otherwise = yxs' ++ f is' ps yxs'' where (yxs', yxs'') = span ((<= a000010' i) . fst) yxs -- Reinhard Zumkeller, Nov 25 2015
-
Mathematica
t = Table[ EulerPhi[n], {n, 1, 5000}]; u = Union[ Select[t, Count[t, # ] == 3 &]]; a = {}; Do[k = 1; While[ EulerPhi[3k] != u[[n]], k++ ]; AppendTo[a, k], {n, 1, 60}]; Sort[a]
-
PARI
is(p) = if(p > 1 && !isprime(p), 0, invphi(eulerphi(3*p)) == [3*p, 4*p, 6*p]); \\ Amiram Eldar, Nov 19 2024, using Max Alekseyev's invphi.gp
Extensions
Edited and extended by Robert G. Wilson v, Jul 19 2003
Nonprimes 343=7^3 and 361=19^2 deleted by Reinhard Zumkeller, Nov 25 2015
Comments