A085722 Numbers k such that k^2 + 1 is a semiprime.
3, 5, 8, 9, 11, 12, 15, 19, 22, 25, 28, 29, 30, 34, 35, 39, 42, 44, 45, 46, 48, 49, 50, 51, 52, 58, 59, 60, 61, 62, 64, 65, 69, 71, 76, 78, 79, 80, 85, 86, 88, 92, 95, 96, 100, 101, 102, 104, 106, 108, 114, 121, 131, 136, 139, 140, 141, 144, 145, 152, 154, 158, 159, 164
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
lst={}; Do[If[Plus@@Last/@FactorInteger[n^2+1]==2, AppendTo[lst,n]], {n,0,200}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 24 2009 *) Select[Range[200],PrimeOmega[#^2+1]==2&] (* Harvey P. Dale, Feb 28 2013 *)
-
PARI
select(vector(50,n,n),n->bigomega(n^2+1)==2) \\ Zak Seidov, Feb 25 2011
Comments