cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A173963 Number of nonoverlapping placements of one 1 X 1 square and one 2 X 2 square on an n X n board.

Original entry on oeis.org

0, 0, 20, 108, 336, 800, 1620, 2940, 4928, 7776, 11700, 16940, 23760, 32448, 43316, 56700, 72960, 92480, 115668, 142956, 174800, 211680, 254100, 302588, 357696, 420000, 490100, 568620, 656208, 753536, 861300, 980220, 1111040, 1254528
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 03 2010

Keywords

Comments

Also the number of placements of a horizontal and a vertical domino on the n X n board. - Ralf Stephan, Jun 10 2014

Programs

  • Magma
    [(n^2 - 4) * (n-1)^2: n in [1..40]]; // Vincenzo Librandi, Sep 14 2011
  • Mathematica
    Table[(n^2-4)(n-1)^2,{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,0,20,108,336},40] (* Harvey P. Dale, Aug 16 2011 *)

Formula

a(n) = (n^2 - 4) * (n-1)^2.
a(n) = A000290(n-1)*A028347(n) = A085740(n-1)/4;
a(n) = A002378(n-2)*A028552(n-1), for n > 1.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with a(1)=0, a(2)=0, a(3)=20, a(4)=108, a(5)=336. - Harvey P. Dale, Aug 16 2011
G.f.: (4*x^3*((x-2)*x-5))/(x-1)^5. - Harvey P. Dale, Aug 16 2011
Showing 1-1 of 1 results.