cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085786 a(n) = n*(2*n^2 + n + 1)/2.

Original entry on oeis.org

2, 11, 33, 74, 140, 237, 371, 548, 774, 1055, 1397, 1806, 2288, 2849, 3495, 4232, 5066, 6003, 7049, 8210, 9492, 10901, 12443, 14124, 15950, 17927, 20061, 22358, 24824, 27465, 30287, 33296, 36498, 39899, 43505, 47322, 51356, 55613, 60099, 64820
Offset: 1

Views

Author

Jon Perry, Jul 23 2003

Keywords

Crossrefs

Cf. A000217 [t(n)], A000096 [t(n)+n], A005449 [t(n)+n^2].
a(n) = A110449(n, n).

Programs

  • Magma
    [n*(2*n^2 + n + 1)/2: n in [1..40]]; // Vincenzo Librandi, Aug 14 2017
  • Mathematica
    CoefficientList[Series[(x + 1) (x + 2) / (x - 1)^4, {x, 0, 40}], x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {2, 11, 33, 74}, 40] (* Vincenzo Librandi, Aug 14 2017 *)
  • PARI
    t(n)=n*(n+1)/2;
    vector(40, i, t(i)+i^3)
    

Formula

a(n) = A000217(n) + n^3.
From Colin Barker, Jan 20 2014: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x*(x+1)*(x+2) / (x-1)^4. (End)
E.g.f.: (x/2)*(4 + 7*x + 2*x^2)*exp(x). - G. C. Greubel, Aug 24 2017

Extensions

Name changed by Wesley Ivan Hurt, Apr 30 2022