cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085799 Determinant of the symmetric n X n matrix A defined by A[i,j] = abs(i^2 - j^2) for 1 <= i,j <= n.

Original entry on oeis.org

0, -9, 240, -6300, 181440, -5821200, 207567360, -8172964800, 352864512000, -16593453676800, 844757641728000, -46306798060723200, 2720119606364160000, -170493211041753600000, 11359219476176732160000, -801737767492652390400000, 59762476409805241712640000, -4691769415367001788620800000
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 24 2003

Keywords

Examples

			From _Klaus Brockhaus_, Apr 28 2010: (Start)
a(5) = determinant(A) = 181440 where A is the matrix
  [ 0  3  8 15 24]
  [ 3  0  5 12 21]
  [ 8  5  0  7 16]
  [15 12  7  0  9]
  [24 21 16  9  0] (End)
		

Crossrefs

Cf. A085750.

Programs

  • Magma
    [ Determinant( SymmetricMatrix( &cat[ [ Abs(i^2-j^2): j in [1..i] ]: i in [1..n] ] ) ): n in [1..15] ]; // Klaus Brockhaus, Apr 28 2010
    
  • Maple
    (Conjectured to give the same sequence, apart from signs): a:=n->sum((count(Permutation(n*2-1),size=n+1)),j=0..n)/2: seq(a(n), n=1..16); # Zerinvary Lajos, May 03 2007
  • Mathematica
    A[i_, j_] := Abs[i^2 - j^2]; a[n_] := Det[Table[A[i, j], {i, n}, {j, n}]]; Table[a[n], {n, 44}] (* José María Grau Ribas, Apr 17 2010 *)
  • PARI
    a(n) = matdet(matrix(n, n, i, j, abs(i^2-j^2))); \\ Michel Marcus, Aug 14 2017

Formula

From Vaclav Kotesovec, Jan 08 2019: (Start)
a(n) ~ -(-1)^n * 2^(2*n - 3/2) * n^(n+2) / exp(n).
Recurrence: (14*n - 27)*a(n) = -8*(n-1)*(7*n + 4)*a(n-1) - 36*(2*n - 3)*a(n-2).
(End)

Extensions

More terms from José María Grau Ribas, Apr 17 2010
Edited by N. J. A. Sloane, Apr 21 2010 at the suggestion of R. J. Mathar
More terms from Michel Marcus, Aug 14 2017