A085799 Determinant of the symmetric n X n matrix A defined by A[i,j] = abs(i^2 - j^2) for 1 <= i,j <= n.
0, -9, 240, -6300, 181440, -5821200, 207567360, -8172964800, 352864512000, -16593453676800, 844757641728000, -46306798060723200, 2720119606364160000, -170493211041753600000, 11359219476176732160000, -801737767492652390400000, 59762476409805241712640000, -4691769415367001788620800000
Offset: 1
Keywords
Examples
From _Klaus Brockhaus_, Apr 28 2010: (Start) a(5) = determinant(A) = 181440 where A is the matrix [ 0 3 8 15 24] [ 3 0 5 12 21] [ 8 5 0 7 16] [15 12 7 0 9] [24 21 16 9 0] (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..140
Crossrefs
Cf. A085750.
Programs
-
Magma
[ Determinant( SymmetricMatrix( &cat[ [ Abs(i^2-j^2): j in [1..i] ]: i in [1..n] ] ) ): n in [1..15] ]; // Klaus Brockhaus, Apr 28 2010
-
Maple
(Conjectured to give the same sequence, apart from signs): a:=n->sum((count(Permutation(n*2-1),size=n+1)),j=0..n)/2: seq(a(n), n=1..16); # Zerinvary Lajos, May 03 2007
-
Mathematica
A[i_, j_] := Abs[i^2 - j^2]; a[n_] := Det[Table[A[i, j], {i, n}, {j, n}]]; Table[a[n], {n, 44}] (* José María Grau Ribas, Apr 17 2010 *)
-
PARI
a(n) = matdet(matrix(n, n, i, j, abs(i^2-j^2))); \\ Michel Marcus, Aug 14 2017
Formula
From Vaclav Kotesovec, Jan 08 2019: (Start)
a(n) ~ -(-1)^n * 2^(2*n - 3/2) * n^(n+2) / exp(n).
Recurrence: (14*n - 27)*a(n) = -8*(n-1)*(7*n + 4)*a(n-1) - 36*(2*n - 3)*a(n-2).
(End)
Extensions
More terms from José María Grau Ribas, Apr 17 2010
Edited by N. J. A. Sloane, Apr 21 2010 at the suggestion of R. J. Mathar
More terms from Michel Marcus, Aug 14 2017