cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A099392 a(n) = floor((n^2 - 2*n + 3)/2).

Original entry on oeis.org

1, 1, 3, 5, 9, 13, 19, 25, 33, 41, 51, 61, 73, 85, 99, 113, 129, 145, 163, 181, 201, 221, 243, 265, 289, 313, 339, 365, 393, 421, 451, 481, 513, 545, 579, 613, 649, 685, 723, 761, 801, 841, 883, 925, 969, 1013, 1059, 1105, 1153, 1201, 1251, 1301, 1353, 1405
Offset: 1

Views

Author

Ralf Stephan following a suggestion from Luke Pebody, Oct 20 2004

Keywords

Crossrefs

Differs from A085913 at n = 61. Apart from leading term, identical to A080827.
Cf. A000217, A001844, A002522, A007494, A007590, A058331 (bisections).
From Guenther Schrack, Apr 17 2018: (Start)
First differences: A052928.
Partial sums: A212964(n) + n for n > 0.
Also A058331 and A001844 interleaved. (End)

Programs

  • Mathematica
    Array[Floor[(#^2 - 2 # + 3)/2] &, 54] (* or *)
    Rest@ CoefficientList[Series[x (-1 + x - x^2 - x^3)/((1 + x) (x - 1)^3), {x, 0, 54}], x] (* Michael De Vlieger, Apr 21 2018 *)
  • PARI
    a(n)=(n^2+3)\2-n \\ Charles R Greathouse IV, Aug 01 2013

Formula

a(n) = ceiling(n^2/2)-n+1. - Paul Barry, Jul 16 2006; index shifted by R. J. Mathar, Jul 29 2007
a(n) = ceiling(A002522(n-1)/2). - Branko Curgus, Sep 02 2007
From R. J. Mathar, Feb 20 2011: (Start)
G.f.: x *( -1+x-x^2-x^3 ) / ( (1+x)*(x-1)^3 ).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n+1) = (3 + 2*n^2 + (-1)^n)/4. (End)
a(n) = A007590(n-1) + 1 for n >= 2. - Richard R. Forberg, Aug 01 2013
a(n) = A000217(n) - A007494(n-1). - Bui Quang Tuan, Mar 27 2015
From Guenther Schrack, Apr 17 2018: (Start)
a(n) = (2*n^2 - 4*n + 5 -(-1)^n)/4.
a(n+2) = a(n) + 2*n for n > 0.
a(n) = 2*A033683(n-1) - 1 for n > 0.
a(n) = A047838(n-1) + 2 for n > 2.
a(n) = A074148(n-1) - n + 2 for n > 1.
a(n) = A183575(n-3) + 3 for n > 3.
a(n) = 2*A290743(n-1) - 3 for n > 0.
a(n) = 2*A290743(n-2) + A109613(n-5) for n > 4.
a(n) = A074148(n) - A014601(n-1) for n > 0. (End)
Sum_{n>=1} 1/a(n) = tanh(Pi/2)*Pi/2 + coth(Pi/sqrt(2))*Pi/(2*sqrt(2)) + 1/2. - Amiram Eldar, Sep 16 2022
E.g.f.: ((2 - x + x^2)*cosh(x) + (3 - x + x^2)*sinh(x) - 2)/2. - Stefano Spezia, Jan 28 2024

A085914 Group the natural numbers so that the product of the terms of the n-th group is divisible by n!: (1),(2),(3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),... Sequence contains the number of terms in each group.

Original entry on oeis.org

1, 1, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, 32, 32, 34, 34, 36, 36, 38, 38, 40, 40, 42, 42, 44, 44, 46, 46, 48, 48, 50, 50, 52, 52, 54, 54, 56, 56, 58, 58, 58, 58, 62, 63, 63, 62, 66, 64, 68, 68, 68, 70, 66
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 10 2003

Keywords

Comments

a(n) <= n.
This sequence may be related to the smoothing sequence suggested in A138023. - Enoch Haga, Feb 28 2008

Crossrefs

Extensions

More terms from Ray Chandler, Sep 15 2003

A085912 Group the natural numbers such that the product of the terms of the n-th group is divisible by n!. (1),(2),(3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),... Sequence contains the product pertaining to groups.

Original entry on oeis.org

1, 2, 12, 1680, 11880, 13366080, 96909120, 424097856000, 3100796899200, 37276043023296000, 273589847231500800, 7359037761652306329600, 54123776422857453312000, 2844359511118991175518208000
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 10 2003

Keywords

Comments

Obviously the n-th group has at most n terms.

Crossrefs

Extensions

More terms from Ray Chandler, Sep 15 2003

A085915 Group the natural numbers such that the product of the terms of the n-th group is divisible by n!: (1), (2), (3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16, 17, 18), (19, 20, 21, 22, 23, 24), ... Sequence contains the product of the terms of the n-th group divided by n!. a(n) = A085912(n)/(n!).

Original entry on oeis.org

1, 1, 2, 70, 99, 18564, 19228, 10518300, 8544965, 10272278170, 6854002506, 15363284301456, 8691760981890, 32626924340528840, 16017346662344280, 93343021201262177400, 40465728802060990857, 346051021610256116115150
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 10 2003

Keywords

Crossrefs

Extensions

More terms from Ray Chandler, Sep 15 2003
Showing 1-4 of 4 results.