cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A085931 Leading diagonal of A085930.

Original entry on oeis.org

2, 4, 12, 17, 23, 39, 48, 58, 69, 95, 109, 124, 140, 157, 195, 215, 236, 258, 281, 305, 357, 384, 412, 441, 471, 502, 534, 602, 637, 673, 710, 748, 787, 827, 868, 954, 998, 1043, 1089, 1136, 1184, 1233, 1283, 1334, 1440, 1494, 1549, 1605, 1662, 1720, 1779
Offset: 1

Views

Author

Jason Earls and Amarnath Murthy, Jul 14 2003

Keywords

Crossrefs

Cf. A085930.

Programs

  • PARI
    a(n) = my(x = (sqrtint(1+8*n)-1)\2); (x+n)*(x+n+1)/2 - n;
    vector(51, n, a(n))  \\ Gheorghe Coserea, Mar 25 2016

Extensions

Offset corrected by Gheorghe Coserea, Mar 25 2016

A334563 a(n) is the maximum number of 4-cycles possible in an n-vertex planar graph.

Original entry on oeis.org

0, 0, 0, 0, 3, 9, 16, 24, 33, 43, 54, 66, 79, 93, 108, 124, 141, 159, 178, 198, 219, 241, 264, 288, 313, 339, 366, 394, 423, 453, 484, 516, 549, 583, 618, 654, 691, 729, 768, 808, 849, 891, 934, 978, 1023, 1069, 1116, 1164, 1213, 1263, 1314, 1366, 1419, 1473, 1528
Offset: 0

Views

Author

Stefano Spezia, May 06 2020

Keywords

Comments

For n > 1, the parity changes every two terms like in A000217 for n > 0.

Crossrefs

Programs

  • Magma
    I:=[0, 0, 0, 0, 3, 9, 16]; [n le 7 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..55]];
    
  • Mathematica
    Join[{0, 0, 0, 0}, Table[(n^2+3n-22)/2, {n, 4, 54}]]
  • PARI
    my(x='x + O('x^55)); concat([0, 0, 0, 0], Vec(serlaplace(11 + 9*x + 3*x^2 + x^3/3 + exp(x)*(x^2 + 4*x - 22)/2)))
    
  • Sage
    (x^4*(3 - 2*x^2)/(1 - x)^3).series(x, 55).coefficients(x, sparse=False)

Formula

O.g.f.: x^4*(3 - 2*x^2)/(1 - x)^3.
E.g.f.: 11 + 9*x + 3*x^2 + x^3/3 + exp(x)*(x^2 + 4*x - 22)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 6.
a(n) = (n^2 + 3*n - 22)/2 for n > 3 and 0 otherwise (see Theorem 2 in Hakimi and Schmeichel).
a(n) = a(n-1) + n + 1 for n > 4.
a(n) = A000217(n) + n - 11 for n > 3.
a(n) = A085930(12, n-3) for 3 < n < 16. - Michel Marcus, Jun 01 2020
Showing 1-2 of 2 results.