A085964 Decimal expansion of the prime zeta function at 4.
0, 7, 6, 9, 9, 3, 1, 3, 9, 7, 6, 4, 2, 4, 6, 8, 4, 4, 9, 4, 2, 6, 1, 9, 2, 9, 5, 9, 3, 3, 1, 5, 7, 8, 7, 0, 1, 6, 2, 0, 4, 1, 0, 5, 9, 7, 1, 4, 8, 4, 3, 1, 9, 0, 2, 6, 4, 9, 3, 8, 0, 0, 8, 8, 5, 9, 2, 1, 6, 5, 7, 0, 4, 8, 7, 5, 6, 4, 2, 0, 6, 5, 1, 0, 3, 3, 3, 1, 0, 6, 7, 8, 5, 3, 9, 6, 2, 8, 9, 5, 4, 2, 0, 2, 9
Offset: 0
Examples
0.0769931397642468449426...
References
- Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
- J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891.
Links
- Jason Kimberley, Table of n, a(n) for n = 0..1603
- Henri Cohen, High Precision Computation of Hardy-Littlewood Constants, Preprint, 1998.
- Henri Cohen, High-precision computation of Hardy-Littlewood constants. [pdf copy, with permission]
- X. Gourdon and P. Sebah, Some Constants from Number theory
- R. J. Mathar, Series of reciprocal powers of k-almost primes, arXiv:0803.0900 [math.NT], 2008-2009. Table 1.
- Eric Weisstein's World of Mathematics, Prime Zeta Function
Crossrefs
Programs
-
Magma
R := RealField(106); PrimeZeta := func
; [0]cat Reverse(IntegerToSequence(Floor(PrimeZeta(4,87)*10^105))); // Jason Kimberley, Dec 30 2016 -
Mathematica
s[n_] := s[n] = Sum[ MoebiusMu[k]*Log[Zeta[4*k]]/k, {k, 1, n}] // RealDigits[#, 10, 104]& // First // Prepend[#, 0]&; s[100]; s[n = 200]; While[s[n] != s[n - 100], n = n + 100]; s[n] (* Jean-François Alcover, Feb 14 2013 *) RealDigits[ PrimeZetaP[ 4], 10, 111][[1]] (* Robert G. Wilson v, Sep 03 2014 *)
-
PARI
sumeulerrat(1/p,4) \\ Hugo Pfoertner, Feb 03 2020
Formula
P(4) = Sum_{p prime} 1/p^4 = Sum_{n>=1} mobius(n)*log(zeta(4*n))/n
Equals Sum_{k>=1} 1/A030514(k). - Amiram Eldar, Jul 27 2020
Comments