cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 50 results. Next

A085548 Decimal expansion of the prime zeta function at 2: Sum_{p prime} 1/p^2.

Original entry on oeis.org

4, 5, 2, 2, 4, 7, 4, 2, 0, 0, 4, 1, 0, 6, 5, 4, 9, 8, 5, 0, 6, 5, 4, 3, 3, 6, 4, 8, 3, 2, 2, 4, 7, 9, 3, 4, 1, 7, 3, 2, 3, 1, 3, 4, 3, 2, 3, 9, 8, 9, 2, 4, 2, 1, 7, 3, 6, 4, 1, 8, 9, 3, 0, 3, 5, 1, 1, 6, 5, 0, 2, 7, 3, 6, 3, 9, 1, 0, 8, 7, 4, 4, 4, 8, 9, 5, 7, 5, 4, 4, 3, 5, 4, 9, 0, 6, 8, 5, 8, 2, 2, 2, 8, 0, 6
Offset: 0

Views

Author

Cino Hilliard, Jul 03 2003

Keywords

Comments

Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 05 2017

Examples

			0.4522474200410654985065... = 1/2^2 + 1/3^2 + 1/5^2 +1/7^2 + 1/11^2 + 1/13^2 + ...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 94-98.

Crossrefs

Decimal expansion of the prime zeta function: this sequence (at 2), A085541 (at 3), A085964 (at 4) to A085969 (at 9).
Cf. A136271 (derivative), A117543 (semiprimes), A222056, A209329, A124012.

Programs

  • Magma
    R := RealField(106);
    PrimeZeta := func;
    Reverse(IntegerToSequence(Floor(PrimeZeta(2,173)*10^105)));
    // Jason Kimberley, Dec 30 2016
  • Mathematica
    RealDigits[PrimeZetaP[2], 10, 105][[1]]  (* Jean-François Alcover, Jun 24 2011, updated May 06 2021 *)
  • PARI
    recip2(n) = { v=0; p=1; forprime(y=2,n, v=v+1./y^2; ); print(v) }
    
  • PARI
    eps()=my(p=default(realprecision)); precision(2.>>(32*ceil(p*38539962/371253907)),9)
    lm=lambertw(log(4)/eps())\log(4);
    sum(k=1,lm, moebius(k)/k*log(abs(zeta(2*k)))) \\ Charles R Greathouse IV, Jul 19 2013
    
  • PARI
    sumeulerrat(1/p,2) \\ Hugo Pfoertner, Feb 03 2020
    

Formula

P(2) = Sum_{p prime} 1/p^2 = Sum_{n>=1} mobius(n)*log(zeta(2*n))/n. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Equals A085991 + A086032 + 1/4. - R. J. Mathar, Jul 22 2010
Equals Sum_{k>=1} 1/A001248(k). - Amiram Eldar, Jul 27 2020
Equals Sum_{k>=2} pi(k)*(2*k+1)/(k^2*(k+1)^2), where pi(k) = A000720(k) (Shamos, 2011, p. 9). - Amiram Eldar, Mar 12 2024

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Offset corrected by R. J. Mathar, Feb 05 2009

A030514 a(n) = prime(n)^4.

Original entry on oeis.org

16, 81, 625, 2401, 14641, 28561, 83521, 130321, 279841, 707281, 923521, 1874161, 2825761, 3418801, 4879681, 7890481, 12117361, 13845841, 20151121, 25411681, 28398241, 38950081, 47458321, 62742241, 88529281, 104060401, 112550881, 131079601, 141158161
Offset: 1

Views

Author

Keywords

Comments

Numbers with 5 divisors (1, p, p^2, p^3, p^4, where p is the n-th prime). - Alexandre Wajnberg, Jan 15 2006
Subsequence of A036967. - Reinhard Zumkeller, Feb 05 2008
The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008
The general product formula for even s is: product_{p = A000040} (p^s-1)/(p^s+1) = 2*Bernoulli(2s)/( binomial(2s, s)*Bernoulli^2(s)), where the infinite product is over all primes. Here, with s = 4, product_{n = 1, 2, ...} (a(n)-1)/(a(n)+1) = 6/7. In A030516, where s = 6, the product of the ratios is 691/715. For s = 8, the 8th row in A120458, the corresponding product of ratios is 7234/7293. - R. J. Mathar, Feb 01 2009
Except for the first three terms, all others are congruent to 1 mod 240. - Robert Israel, Aug 29 2014

Crossrefs

Programs

Formula

a(n) = A000040(n)^(5-1) = A000040(n)^4, where 5 is the number of divisors of a(n). - Omar E. Pol, May 06 2008
A000005(a(n)) = 5. - Alexandre Wajnberg, Jan 15 2006
A056595(a(n)) = 2. - Reinhard Zumkeller, Aug 15 2011
Sum_{n>=1} 1/a(n) = P(4) = 0.0769931397... (A085964). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(4)/zeta(8) = 105/Pi^4 (A157290).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(4) = 90/Pi^4 (A215267). (End)

Extensions

Description corrected by Eric W. Weisstein

A077761 Decimal expansion of Mertens's constant, which is the limit of (Sum_{i=1..k} 1/prime(i)) - log(log(prime(k))) as k goes to infinity, where prime(i) is the i-th prime number.

Original entry on oeis.org

2, 6, 1, 4, 9, 7, 2, 1, 2, 8, 4, 7, 6, 4, 2, 7, 8, 3, 7, 5, 5, 4, 2, 6, 8, 3, 8, 6, 0, 8, 6, 9, 5, 8, 5, 9, 0, 5, 1, 5, 6, 6, 6, 4, 8, 2, 6, 1, 1, 9, 9, 2, 0, 6, 1, 9, 2, 0, 6, 4, 2, 1, 3, 9, 2, 4, 9, 2, 4, 5, 1, 0, 8, 9, 7, 3, 6, 8, 2, 0, 9, 7, 1, 4, 1, 4, 2, 6, 3, 1, 4, 3, 4, 2, 4, 6, 6, 5, 1, 0, 5, 1, 6, 1, 7
Offset: 0

Views

Author

T. D. Noe, Nov 14 2002

Keywords

Comments

Graham, Knuth & Patashnik incorrectly give this constant as 0.261972128. - Robert G. Wilson v, Dec 02 2005 [This was corrected in the second edition (1994). - T. D. Noe, Mar 11 2017]
Also the average deviation of the number of distinct prime factors: sum_{n < x} omega(n) = x log log x + B_1 x + O(x) where B_1 is this constant, see (e.g.) Hardy & Wright. - Charles R Greathouse IV, Mar 05 2021
Named after the Polish mathematician Franz Mertens (1840-1927). Sometimes called Meissel-Mertens constant, after Mertens and the German astronomer Ernst Meissel (1826-1895). - Amiram Eldar, Jun 16 2021

Examples

			0.26149721284764278375542683860869585905156664826119920619206421392...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2004, pp. 94-98
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, A Foundation For Computer Science, Addison-Wesley, Reading, MA, 1989, p. 23.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed. (1975). Oxford, England: Oxford University Press. See 22.10, "The number of prime factors of n".
  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Section VII.28, p. 257.

Crossrefs

Cf. A001620.

Programs

  • Mathematica
    $MaxExtraPrecision = 400; RealDigits[ N[EulerGamma + NSum[(MoebiusMu[m]/m)*Log[N[Zeta[m], 120]], {m, 2, 1000}, Method -> "EulerMaclaurin", AccuracyGoal -> 120, NSumTerms -> 1000, PrecisionGoal -> 120, WorkingPrecision -> 120] , 120]][[1, 1 ;; 105]]
    (* or, from version 7 up: *) digits = 105; M = EulerGamma - NSum[ PrimeZetaP[n] / n, {n, 2, Infinity}, WorkingPrecision -> digits+10, NSumTerms -> 3*digits]; RealDigits[M, 10, digits] // First (* Jean-François Alcover, Mar 16 2011, updated Sep 01 2015 *)

Formula

Equals A001620 - Sum_{n>=2} zeta_prime(n)/n where the zeta prime sequence is A085548, A085541, A085964, A085965, A085966 etc. [Sebah and Gourdon] - R. J. Mathar, Apr 29 2006
Equals gamma + Sum_{p prime} (log(1-1/p) + 1/p), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 25 2021
Equals lim_{k->oo} -k + Sum_{p prime} 1/(p*log(p)^(1/k)) conjectured by Meissel in 1866 and proven by Peter Lindqvist and Jaak Peetre in 1997 see links - Artur Jasinski, Mar 11 2025

A136141 Decimal expansion of Sum_{p prime} 1/(p*(p-1)).

Original entry on oeis.org

7, 7, 3, 1, 5, 6, 6, 6, 9, 0, 4, 9, 7, 9, 5, 1, 2, 7, 8, 6, 4, 3, 6, 7, 4, 5, 9, 8, 5, 5, 9, 4, 2, 3, 9, 5, 6, 1, 8, 7, 4, 1, 3, 3, 6, 0, 8, 3, 1, 8, 6, 0, 4, 8, 3, 1, 1, 0, 0, 6, 0, 6, 7, 3, 5, 6, 7, 0, 9, 0, 2, 8, 4, 8, 9, 2, 3, 3, 3, 9, 7, 8, 3, 3, 7, 9, 8, 7, 5, 8, 8, 2, 3, 3, 2, 0, 8, 1, 8, 3, 2, 8, 9
Offset: 0

Views

Author

R. J. Mathar, Mar 09 2008

Keywords

Comments

Excess of prime factors with multiplicity over distinct prime factors for random (large) integers. - Charles R Greathouse IV, Sep 06 2011
Sum of reciprocals of (proper) prime powers. The sum of reciprocals of all proper powers is A072102. - Charles R Greathouse IV, Apr 24 2012
Decimal expansion of the infinite sum of the reciprocals of the prime powers which are not prime (A246547). - Robert G. Wilson v, May 13 2019
See the second 'Applications' example under the Mathematica help file for the function PrimePowerQ. - Robert G. Wilson v, May 13 2019
It easy to prove that this constant < 1 (Sum_{p prime} 1/(p*(p-1)) < Sum_{k>=2} 1/(k*(k-1)) = 1). Luthar (1969) asks for a better upper bound. The solution shows that this constant is < 3/2 - log(2) = 0.80685... . - Amiram Eldar, Feb 14 2025

Examples

			Equals 1/2 + 1/(3*2) + 1/(5*4) + 1/(7*6) + ...
= 0.7731566690497951278643674598559423956187413360831860483110060673567...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • Steven R. Finch, Mathematical Constants, Cambridge Univ. Press, 2003, Meissel-Mertens constants, p. 94.

Crossrefs

Cf. A152447 (over the semiprimes), A000040, A000720, A001248, A046660 (excess, see first comment), A072102, A077761, A083342, A179119, A246547.
Decimal expansion of the prime zeta function: A085548 (at 2), A085541 (at 3), A085964 (at 4) to A085969 (at 9).

Programs

  • Magma
    R := RealField(105);
    c := &+[R|(EulerPhi(n)-MoebiusMu(n))/n*Log(ZetaFunction(R,n)):n in[2..360]];
    Reverse(IntegerToSequence(Floor(c*10^103))); // Jason Kimberley, Jan 12 2017
  • Mathematica
    digits = 103; sp = NSum[PrimeZetaP[n], {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 2*digits]; RealDigits[sp, 10, digits] // First (* Jean-François Alcover, Sep 02 2015 *)
  • PARI
    W(x)=solve(y=log(x)/2,max(1,log(x)),y*exp(y)-x)
    eps()=2. >> (32*ceil(default(realprecision)/9.63))
    primezeta(s)=my(t=s*log(2),iter=W(t/eps())\t);sum(k=1,iter, moebius(k)/k*log(abs(zeta(k*s))))
    a(lim,e)={ \\ choose parameters to maximize speed and precision
        my(x,y=exp(W(lim)-.5));
        x=lim^e*(e*log(y))^e*(y*log(y))^-e*incgam(-e,e*log(y));
        forprime(p=2,lim,x+=1/((p*1.)^e*(p-1)));
        x+sum(n=2,e,primezeta(n))
    }; \\ Charles R Greathouse IV, Sep 07 2011
    
  • PARI
    sumeulerrat(1/(p*(p-1))) \\ Amiram Eldar, Mar 18 2021
    

Formula

Equals Sum_{n>=1} 1/A036689(n).
Equals Sum_{s>=2} P(s), where P is the prime zeta function. - Charles R Greathouse IV, Sep 06 2011
Equals A083342 - A077761, that is, Sum_{n>=2} ((EulerPhi(n) - MoebiusMu(n))/n) * log(zeta(n)). - Jean-François Alcover, Sep 02 2015
Equals 2 * Sum_{k>=2} pi(k)/(k^3-k), where pi(k) = A000720(k) (Shamos, 2011, p. 8). - Amiram Eldar, Mar 12 2024

Extensions

More terms from D. S. McNeil, Sep 06 2011
More digits from Jean-François Alcover, Sep 02 2015

A085541 Decimal expansion of the prime zeta function at 3.

Original entry on oeis.org

1, 7, 4, 7, 6, 2, 6, 3, 9, 2, 9, 9, 4, 4, 3, 5, 3, 6, 4, 2, 3, 1, 1, 3, 3, 1, 4, 6, 6, 5, 7, 0, 6, 7, 0, 0, 9, 7, 5, 4, 1, 2, 1, 2, 1, 9, 2, 6, 1, 4, 9, 2, 8, 9, 8, 8, 8, 6, 7, 2, 0, 1, 6, 7, 0, 1, 6, 3, 1, 5, 8, 9, 5, 2, 8, 1, 2, 9, 5, 8, 7, 6, 3, 5, 6, 3, 4, 2, 0, 0, 5, 3, 6, 9, 7, 2, 5, 6, 0, 5, 4, 6, 7, 9, 1
Offset: 0

Views

Author

Cino Hilliard, Jul 02 2003

Keywords

Comments

Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 05 2017

Examples

			0.1747626392994435364231...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891.

Crossrefs

Decimal expansion of the prime zeta function: A085548 (at 2), this sequence (at 3), A085964 (at 4) to A085969 (at 9).

Programs

  • Magma
    R := RealField(106);
    PrimeZeta := func;
    Reverse(IntegerToSequence(Floor(PrimeZeta(3,117)*10^105)));
    // Jason Kimberley, Dec 30 2016
  • Mathematica
    (* If Mathematica version >= 7.0 then RealDigits[PrimeZetaP[3]//N[#,105]&][[1]] else : *) m = 200; $MaxExtraPrecision = 200; PrimeZetaP[s_] := NSum[MoebiusMu[k]*Log[Zeta[k*s]]/k, {k, 1, m}, AccuracyGoal -> m, NSumTerms -> m, PrecisionGoal -> m, WorkingPrecision -> m]; RealDigits[PrimeZetaP[3]][[1]][[1 ;; 105]] (* Jean-François Alcover, Jun 24 2011 *)
  • PARI
    recip3(n) = { v=0; p=1; forprime(y=2,n, v=v+1./y^3; ); print(v) }
    
  • PARI
    sumeulerrat(1/p,3) \\ Hugo Pfoertner, Feb 03 2020
    

Formula

P(3) = Sum_{p prime} 1/p^3 = Sum_{n>=1} mobius(n)*log(zeta(3*n))/n. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Equals A086033 + A085992 + 1/8. - R. J. Mathar, Jul 22 2010
Equals Sum_{k>=1} 1/A030078(k). - Amiram Eldar, Jul 27 2020

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

A179119 Decimal expansion of Sum_{p prime} 1/(p*(p+1)).

Original entry on oeis.org

3, 3, 0, 2, 2, 9, 9, 2, 6, 2, 6, 4, 2, 0, 3, 2, 4, 1, 0, 1, 5, 0, 9, 4, 5, 8, 8, 0, 8, 6, 7, 4, 4, 7, 6, 0, 6, 4, 4, 2, 5, 9, 4, 1, 9, 4, 7, 4, 0, 7, 0, 4, 5, 6, 1, 5, 0, 2, 2, 8, 6, 0, 0, 7, 6, 2, 4, 2, 2, 1, 6, 6, 7, 9, 2, 9, 0, 7, 9, 4, 4, 3, 2, 1, 7, 0, 3, 2, 0, 7, 5, 1, 3, 2, 3, 5, 1, 0, 3, 1, 2
Offset: 0

Views

Author

R. J. Mathar, Jan 21 2013

Keywords

Examples

			0.33022992626420324101.. = 1/(2*3) +1/(3*4) +1/(5*6) + 1/(7*8) +... = sum_{n>=1} 1/ (A000040(n)*A008864(n)).
		

Crossrefs

Cf. A136141 for 1/(p(p-1)), A085548 for 1/p^2.
Decimal expansion of the prime zeta function: A085548 (at 2), A085541 (at 3), A085964 (at 4) to A085969 (at 9).
Cf. A307379.

Programs

  • Magma
    R:=RealField(103);
    ExhaustSum :=
      function(
        k_min, term
      : IZ := func)
        c:=R!0; k:=k_min;
        repeat
          t:=term(k); c+:=t; k+:=1;
        until IZ(t,k-1);
        return c;
      end function;
    RealField(101)!
    ExhaustSum(2,
      func
        : IZ:=func
        )>);
    // Jason Kimberley, Jan 20 2017
  • Maple
    interface(quiet=true):
    read("transforms") ;
    Digits := 300 ;
    ZetaM := proc(s,M)
        local v,p;
        v := Zeta(s) ;
        p := 2;
        while p <= M do
            v := v*(1-1/p^s) ;
            p := nextprime(p) ;
        end do:
        v ;
    end proc:
    Hurw := proc(a)
            local T,p,x,L,i,Le,pre,preT,v,t,M ;
        T := 40 ;
        preT := 0.0 ;
        while true do
                1/p/(p+a) ;
                subs(p=1/x,%) ;
                exp(%) ;
                t := taylor(%,x=0,T) ;
                L := [] ;
                for i from 1 to T-1 do
                        L := [op(L),evalf(coeftayl(t,x=0,i))] ;
                end do:
                Le := EULERi(L) ;
            M := -a ;
                v := 1.0 ;
                pre := 0.0 ;
                for i from 2 to nops(Le) do
                        pre := log(v) ;
                        v := v*evalf(ZetaM(i,M))^op(i,Le) ;
                        v := evalf(v) ;
                end do:
            pre := (log(v)+pre)/2. ;
            printf("%.105f\n",%) ;
            if abs(1.0-preT/pre)  < 10^(-Digits/3) then
                break;
            end if;
            preT := pre ;
            T := T+10 ;
        end do:
            pre ;
    end proc:
    A179119 := proc()
        Hurw(1) ;
    end proc:
    A179119() ;
  • Mathematica
    digits = 101; S = NSum[(-1)^n PrimeZetaP[n], {n, 2, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits + 5]; RealDigits[S, 10, digits] // First (* Jean-François Alcover, Sep 11 2015 *)
  • PARI
    eps()=2.>>bitprecision(1.)
    primezeta(s)=my(t=s*log(2)); sum(k=1, lambertw(t/eps())\t, moebius(k)/k*log(abs(zeta(k*s))))
    sumalt(k=2,(-1)^k*primezeta(k)) \\ Charles R Greathouse IV, Aug 03 2016
    
  • PARI
    sumeulerrat(1/(p*(p+1))) \\ Amiram Eldar, Mar 18 2021
    

Formula

P(2) - P(3) + P(4) - P(5) + ..., where P is the prime zeta function. - Charles R Greathouse IV, Aug 03 2016

A085986 Squares of the squarefree semiprimes (p^2*q^2).

Original entry on oeis.org

36, 100, 196, 225, 441, 484, 676, 1089, 1156, 1225, 1444, 1521, 2116, 2601, 3025, 3249, 3364, 3844, 4225, 4761, 5476, 5929, 6724, 7225, 7396, 7569, 8281, 8649, 8836, 9025, 11236, 12321, 13225, 13924, 14161, 14884, 15129, 16641, 17689, 17956, 19881
Offset: 1

Views

Author

Alford Arnold, Jul 06 2003

Keywords

Comments

This sequence is a member of a family of sequences directly related to A025487. First terms and known sequences are listed below: 1, A000007; 2, A000040; 4, A001248; 6, A006881; 8, A030078; 12, A054753; 16, A030514; 24, A065036; 30, A007304; 32, A050997; 36, this sequence; 48, ?; 60, ?; 64, ?; ....
Subsequence of A077448. The numbers in A077448 but not in here are 1, the squares of A046386, the squares of A067885, etc. - R. J. Mathar, Sep 12 2008
a(4)-a(3)=29 and a(3)+a(4)=421 are both prime. There are no other cases where the sum and difference of two members of this sequence are both prime. - Robert Israel and J. M. Bergot, Oct 25 2019

Examples

			A006881 begins 6 10 14 15 ... so this sequence begins 36 100 196 225 ...
		

Crossrefs

Subsequence of A036785 and of A077448.
Subsequence of A062503.
Cf. A025487.

Programs

  • Magma
    [k^2:k in [1..150]| IsSquarefree(k) and #PrimeDivisors(k) eq 2]; // Marius A. Burtea, Oct 24 2019
    
  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,2}; Select[Range[20000], f] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2009 *)
    Select[Range[200],PrimeOmega[#]==2&&SquareFreeQ[#]&]^2 (* Harvey P. Dale, Mar 07 2013 *)
  • PARI
    list(lim)=my(v=List(), x=sqrtint(lim\=1), t); forprime(p=2, x\2, t=p; forprime(q=2, min(x\t,p-1), listput(v, (t*q)^2))); Set(v) \\ Charles R Greathouse IV, Sep 22 2015
    
  • PARI
    is(n)=factor(n)[,2]==[2,2]~ \\ Charles R Greathouse IV, Oct 19 2015
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A085986(n):
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m**2 # Chai Wah Wu, Aug 18 2024

Formula

a(n) = A006881(n)^2.
Sum_{n>=1} 1/a(n) = (P(2)^2 - P(4))/2 = (A085548^2 - A085964)/2 = 0.063767..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

A178739 Product of the 4th power of a prime (A030514) and a different prime (p^4*q).

Original entry on oeis.org

48, 80, 112, 162, 176, 208, 272, 304, 368, 405, 464, 496, 567, 592, 656, 688, 752, 848, 891, 944, 976, 1053, 1072, 1136, 1168, 1250, 1264, 1328, 1377, 1424, 1539, 1552, 1616, 1648, 1712, 1744, 1808, 1863, 1875, 2032, 2096, 2192, 2224, 2349, 2384, 2416, 2511
Offset: 1

Views

Author

Will Nicholes, Jun 08 2010

Keywords

Comments

Subsequence of A030628.

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,4}; Select[Range[10000], f] (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
    max = 500000; A178739 = DeleteCases[Union[Table[Prime[p] Prime[q]^4 Boole[p != q], {p, PrimePi[max/16]}, {q, PrimePi[max/2]}]], 0]; Take[A178739, 50] (* Alonso del Arte, Aug 05 2012 *)
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2,(lim\2)^(1/4), t=p^4; forprime(q=2,lim\t, if(p==q,next); listput(v,t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from sympy import primepi, primerange, integer_nthroot
    def A178739(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p**4) for p in primerange(integer_nthroot(x,4)[0]+1))+primepi(integer_nthroot(x,5)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

a(n) ~ kn log n with k = 1/P(4) = 1/A085964 = 12.98817.... - Charles R Greathouse IV, Feb 23 2017

A085966 Decimal expansion of the prime zeta function at 6.

Original entry on oeis.org

0, 1, 7, 0, 7, 0, 0, 8, 6, 8, 5, 0, 6, 3, 6, 5, 1, 2, 9, 5, 4, 1, 3, 3, 6, 7, 3, 2, 6, 6, 0, 5, 9, 3, 9, 9, 2, 0, 9, 5, 8, 5, 9, 4, 1, 8, 7, 4, 5, 4, 4, 2, 4, 4, 7, 3, 3, 1, 6, 3, 3, 6, 8, 8, 3, 6, 9, 6, 9, 7, 3, 6, 7, 4, 7, 1, 7, 2, 4, 3, 6, 6, 7, 1, 8, 6, 0, 3, 5, 0, 0, 7, 8, 1, 8, 0, 6, 2, 3, 0, 2, 8, 8, 2, 3
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Comments

Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 07 2017

Examples

			0.0170700868506365129541...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891.

Crossrefs

Decimal expansion of the prime zeta function: A085548 (at 2), A085541 (at 3), A085964 (at 4), A085965 (at 5), this sequence (at 6), A085967 (at 7) to A085969 (at 9).

Programs

  • Magma
    R := RealField(106);
    PrimeZeta := func;
    [0]cat Reverse(IntegerToSequence(Floor(PrimeZeta(6,57)*10^105)));
    // Jason Kimberley, Dec 30 2016
    
  • Mathematica
    s[n_] := s[n] = Sum[ MoebiusMu[k]*Log[Zeta[6*k]]/k, {k, 1, n}] // RealDigits[#, 10, 104]& // First // Prepend[#, 0]&; s[100]; s[n = 200]; While[s[n] != s[n - 100], n = n + 100]; s[n] (* Jean-François Alcover, Feb 14 2013 *)
    RealDigits[ PrimeZetaP[ 6], 10, 111][[1]] (* Robert G. Wilson v, Sep 03 2014 *)
  • PARI
    sumeulerrat(1/p,6) \\ Hugo Pfoertner, Feb 03 2020

Formula

P(6) = Sum_{p prime} 1/p^6 = Sum_{n>=1} mobius(n)*log(zeta(6*n))/n
Equals 1/2^6 + A085995 + A086036. - R. J. Mathar, Jul 14 2012
Equals Sum_{k>=1} 1/A030516(k). - Amiram Eldar, Jul 27 2020

A085965 Decimal expansion of the prime zeta function at 5.

Original entry on oeis.org

0, 3, 5, 7, 5, 5, 0, 1, 7, 4, 8, 3, 9, 2, 4, 2, 5, 7, 1, 3, 2, 8, 1, 8, 2, 4, 2, 5, 3, 8, 8, 5, 5, 7, 1, 1, 1, 3, 1, 6, 9, 7, 2, 7, 6, 7, 2, 6, 6, 5, 1, 3, 3, 1, 6, 9, 0, 0, 9, 2, 6, 7, 4, 8, 2, 3, 9, 7, 5, 8, 3, 4, 2, 7, 4, 7, 2, 7, 9, 3, 1, 3, 6, 6, 0, 7, 2, 8, 0, 6, 4, 7, 0, 3, 7, 6, 7, 9, 5, 0, 8, 9, 6, 3, 9
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Comments

Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 05 2017

Examples

			0.0357550174839242571328...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891.

Crossrefs

Decimal expansion of the prime zeta function: A085548 (at 2), A085541 (at 3), A085964 (at 4), this sequence (at 5), A085966 (at 6) to A085969 (at 9).

Programs

  • Magma
    R := RealField(106);
    PrimeZeta := func;
    [0] cat Reverse(IntegerToSequence(Floor(PrimeZeta(5,69)*10^105)));
    // Jason Kimberley, Dec 30 2016
    
  • Mathematica
    s[n_] := s[n] = Sum[ MoebiusMu[k]*Log[Zeta[5*k]]/k, {k, 1, n}] // RealDigits[#, 10, 104]& // First // Prepend[#, 0]&; s[100]; s[n=200]; While[s[n] != s[n-100], n = n+100]; s[n] (* Jean-François Alcover, Feb 14 2013, from 1st formula *)
    RealDigits[ PrimeZetaP[ 5], 10, 111][[1]] (* Robert G. Wilson v, Sep 03 2014 *)
  • PARI
    sumeulerrat(1/p,5) \\ Hugo Pfoertner, Feb 03 2020

Formula

P(5) = Sum_{p prime} 1/p^5 = Sum_{n>=1} mobius(n)*log(zeta(5*n))/n.
Equals 1/2^5 + A085994 + A086035. - R. J. Mathar, Jul 14 2012
Equals Sum_{k>=1} 1/A050997(k). - Amiram Eldar, Jul 27 2020
Showing 1-10 of 50 results. Next