A085971 Union of primes and numbers that are not prime powers (A000040, A024619).
2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1
Programs
-
Mathematica
With[{nn=100},Union[Join[Prime[Range[PrimePi[nn]]],DeleteCases[Range[2,80], ?(PrimePowerQ[#]&)]]]] (* _Harvey P. Dale, May 15 2019 *)
-
PARI
is(n)=isprimepower(n)<2 && n>1 \\ Charles R Greathouse IV, Oct 19 2015
-
Python
from sympy import primepi, integer_nthroot def A085971(n): def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 20 2024
Formula
a(n) = n + o(sqrt n). - Charles R Greathouse IV, Oct 19 2015
Comments