cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A085974 Number of 0's in the decimal expansion of prime(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jason Earls, Jul 06 2003

Keywords

Examples

			prime(26) = 101, so a(26) = 1 and prime(1230) = 10007, so a(1230) = 3.
		

Crossrefs

Cf. 1's A085975, 2's A085976, 3's A085977, 4's A085978, 5's A085979, 6's A085980, 7's A085981, 8's A085982, 9's A085983.
Cf. A055641.

Programs

  • Haskell
    a085974 = count0 0 . a000040 where
       count0 c x | d == 0    = if x < 10 then c + 1 else count0 (c + 1) x'
                  | otherwise = if x < 10 then c else count0 c x'
                  where (x', d) = divMod x 10
    -- Reinhard Zumkeller, Apr 08 2014
  • Mathematica
    DigitCount[Prime[Range[100]],10,0] (* Paolo Xausa, Oct 30 2023 *)

A085975 Number of 1's in decimal expansion of prime(n).

Original entry on oeis.org

0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Jason Earls, Jul 06 2003

Keywords

Examples

			prime(5) = 11, so a(5)=2 and prime(1242) = 10111, so a(1242)=4.
		

Crossrefs

Cf. 0's A085974, 2's A085976, 3's A085977, 4's A085978, 5's A085979, 6's A085980, 7's A085981, 8's A085982, 9's A085983.

Programs

  • Haskell
    a085975 = count1 0 . a000040 where
       count1 c x | d == 1    = if x < 10 then c + 1 else count1 (c + 1) x'
                  | otherwise = if x < 10 then c else count1 c x'
                  where (x', d) = divMod x 10
    -- Reinhard Zumkeller, Apr 08 2014
  • Mathematica
    DigitCount[Prime[Range[100]],10,1] (* Paolo Xausa, Oct 30 2023 *)

A085977 Number of 3's in decimal expansion of prime(n).

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 0, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Jason Earls, Jul 06 2003

Keywords

Examples

			prime(2) = 3, so a(2)=1 and prime(345) = 2333, so a(345)=3.
		

Crossrefs

Cf. 0's A085974, 1's A085975, 2's A085976, 4's A085978, 5's A085979, 6's A085980, 7's A085981, 8's A085982, 9's A085983.

Programs

  • Haskell
    a085977 = count3 0 . a000040 where
       count3 c x | d == 3    = if x < 10 then c + 1 else count3 (c + 1) x'
                  | otherwise = if x < 10 then c else count3 c x'
                  where (x', d) = divMod x 10
    -- Reinhard Zumkeller, Apr 08 2014
  • Mathematica
    DigitCount[Prime[Range[110]],10,3] (* Harvey P. Dale, Aug 05 2019 *)

A085978 Number of 4's in decimal expansion of prime(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Jason Earls, Jul 06 2003

Keywords

Crossrefs

Cf. 0's A085974, 1's A085975, 2's A085976, 3's A085977, 5's A085979, 6's A085980, 7's A085981, 8's A085982, 9's A085983.

Programs

  • Haskell
    a085978 = count4 0 . a000040 where
       count4 c x | d == 4    = if x < 10 then c + 1 else count4 (c + 1) x'
                  | otherwise = if x < 10 then c else count4 c x'
                  where (x', d) = divMod x 10
    -- Reinhard Zumkeller, Apr 08 2014
  • Mathematica
    DigitCount[#,10,4]&/@Prime[Range[110]] (* Harvey P. Dale, May 30 2021 *)

A085979 Number of 5's in decimal expansion of prime(n).

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Jason Earls, Jul 06 2003

Keywords

Crossrefs

Cf. 0's A085974, 1's A085975, 2's A085976, 3's A085977, 4's A085978, 6's A085980, 7's A085981, 8's A085982, 9's A085983.

Programs

  • Haskell
    a085979 = count5 0 . a000040 where
       count5 c x | d == 5    = if x < 10 then c + 1 else count5 (c + 1) x'
                  | otherwise = if x < 10 then c else count5 c x'
                  where (x', d) = divMod x 10
    -- Reinhard Zumkeller, Apr 08 2014
  • Mathematica
    DigitCount[Prime[Range[100]],10,5] (* Paolo Xausa, Oct 30 2023 *)

A085980 Number of 6's in decimal expansion of prime(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0
Offset: 1

Views

Author

Jason Earls, Jul 06 2003

Keywords

Crossrefs

Cf. 0's A085974, 1's A085975, 2's A085976, 3's A085977, 4's A085978, 5's A085979, 7's A085981, 8's A085982, 9's A085983.

Programs

  • Haskell
    a085980 = count6 0 . a000040 where
       count6 c x | d == 6    = if x < 10 then c + 1 else count6 (c + 1) x'
                  | otherwise = if x < 10 then c else count6 c x'
                  where (x', d) = divMod x 10
    -- Reinhard Zumkeller, Apr 08 2014
  • Mathematica
    Table[DigitCount[n,10,6],{n,Prime[Range[110]]}] (* Harvey P. Dale, Mar 20 2018 *)

A085981 Number of 7's in decimal expansion of prime(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1
Offset: 1

Views

Author

Jason Earls, Jul 06 2003

Keywords

Crossrefs

Cf. 0's A085974, 1's A085975, 2's A085976, 3's A085977, 4's A085978, 5's A085979, 6's A085980, 8's A085982, 9's A085983.

Programs

  • Haskell
    a085981 = count7 0 . a000040 where
       count7 c x | d == 7    = if x < 10 then c + 1 else count7 (c + 1) x'
                  | otherwise = if x < 10 then c else count7 c x'
                  where (x', d) = divMod x 10
    -- Reinhard Zumkeller, Apr 08 2014
  • Mathematica
    DigitCount[Prime[Range[100]],10,7] (* Paolo Xausa, Oct 30 2023 *)

A085982 Number of 8's in decimal expansion of prime(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jason Earls, Jul 06 2003

Keywords

Crossrefs

Cf. 0's A085974, 1's A085975, 2's A085976, 3's A085977, 4's A085978, 5's A085979, 6's A085980, 7's A085981, 9's A085983.

Programs

  • Haskell
    a085982 = count8 0 . a000040 where
       count8 c x | d == 8    = if x < 10 then c + 1 else count8 (c + 1) x'
                  | otherwise = if x < 10 then c else count8 c x'
                  where (x', d) = divMod x 10
    -- Reinhard Zumkeller, Apr 08 2014
  • Mathematica
    DigitCount[Prime[Range[150]],10,8](* Harvey P. Dale, Jun 11 2016 *)

A085983 Number of 9's in decimal expansion of prime(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Jason Earls, Jul 06 2003

Keywords

Crossrefs

Cf. 0's A085974, 1's A085975, 2's A085976, 3's A085977, 4's A085978, 5's A085979, 6's A085980, 7's A085981, 8's A085982.

Programs

  • Haskell
    a085983 = count9 0 . a000040 where
       count9 c x | d == 9    = if x < 10 then c + 1 else count9 (c + 1) x'
                  | otherwise = if x < 10 then c else count9 c x'
                  where (x', d) = divMod x 10
    -- Reinhard Zumkeller, Apr 08 2014
  • Mathematica
    DigitCount[#,10,9]&/@Prime[Range[110]] (* Harvey P. Dale, May 08 2018 *)

A121242 Number of 2's in first n primes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24
Offset: 1

Views

Author

Zak Seidov, Aug 22 2006

Keywords

Comments

In the first 10^m (m=3,4,5) primes there are 339, 4070, 55213 2's, among all 3803, 48982, 610484 digits, which gives the frequencies {0.08914, 0.08309, 0.09044}.

Crossrefs

Cf. A068670 Number of digits in the first n primes.
Partial sums of A085976.

Programs

  • Maple
    ListTools:-PartialSums([seq(numboccur(2,convert(ithprime(i),base,10)),i=1..100)]); # Robert Israel, Jun 13 2018
  • Mathematica
    Accumulate[DigitCount[Prime[Range[90]],10,2]] (* Harvey P. Dale, Nov 09 2013 *)
Showing 1-10 of 10 results.