cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086006 Primes p such that 2*p-1 and 2*p+1 are semiprimes.

Original entry on oeis.org

17, 43, 47, 61, 71, 101, 107, 109, 151, 197, 223, 317, 349, 421, 461, 521, 569, 631, 673, 701, 821, 881, 919, 947, 971, 991, 1051, 1091, 1109, 1153, 1181, 1217, 1231, 1259, 1321, 1361, 1367, 1549, 1693, 1801, 1847, 1933, 1951, 1979, 2143, 2207
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 07 2003

Keywords

Comments

a(n) = A086005(n)/2.

Examples

			101 is prime and 2*101-1=201=3*67, 2*101+1=203=7*29, therefore 101 is a term.
It is the sixth term and a(6)=101=A086005(6)/2.
		

Crossrefs

Programs

  • Haskell
    a086006 = flip div 2 . a086005  -- Reinhard Zumkeller, Aug 08 2013
  • Mathematica
    Select[Prime[Range[400]],PrimeOmega[2#-1]==PrimeOmega[2#+1]==2&] (* Harvey P. Dale, Jun 23 2016 *)
  • PARI
    isok(n) = isprime(n) && (bigomega(2*n+1) == 2) && (bigomega(2*n-1) == 2) \\ Michel Marcus, Aug 01 2013
    

Formula

A064911(2*a(n)-1) * A064911(2*a(n)+1) = 1. - Reinhard Zumkeller, Aug 08 2013